
Maintaining Statistical Summaries over Dynamic Data

by

Yuan QIU

Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Supervised by Prof. Ke YI

March 2020, Hong Kong

Contents

Title Page i

Table of Contents ii

Abstract v

1 Introduction 1

2 Preliminaries 2
2.1 Data Stream Models . 2
2.2 Distributed Stream Model . 3
2.3 Inequalities . 3

2.3.1 Markov’s Inequality . 3
2.3.2 Chebyshev’s Inequality . 3
2.3.3 Additive Chernoff-Hoeffding bound . 4

2.4 Notations . 4

3 Distinct Count 5
3.1 Cash Register Model . 5

3.1.1 Probabilistic Counting (FM-sketch) . 6
3.1.2 (Hyper)LogLog . 6
3.1.3 KMV and MinCount . 7
3.1.4 Coordinated (Distinct) Sampling . 8
3.1.5 S-BITMAP . 8

3.2 Turnstile Model and Sliding Windows . 8
3.2.1 Augmenting FM/HLL/KMV with Counters 9
3.2.2 Approximation by Stable Distribution Sketch 9
3.2.3 Nearly Optimal Algorithm on Sliding Windows 10

3.3 Distributed Streams . 10
3.3.1 Merging FM/HLL/KMV . 10
3.3.2 Lazy Update Algorithms . 11
3.3.3 Distributed Distinct Sampling . 11

3.4 Remarks . 12

4 Frequency Estimation and Heavy Hitters 13
4.1 Basic Counting . 13
4.2 Cash Register Model . 14

4.2.1 Misra-Gries Summary and SpaceSaving 14
4.3 Turnstile Model and Sliding Windows . 15

4.3.1 Count-Min Sketch . 15
4.3.2 Count Sketch . 16

ii

4.3.3 Sliding-Windows Sketches . 17
4.3.4 Window Counter . 18

4.4 Distributed Multisets . 18
4.4.1 Deterministic Solution . 18
4.4.2 Coin-Flip Sampling . 18
4.4.3 Importance Sampling . 19

4.5 Distributed Streams . 19
4.5.1 Lazy Update Algorithm . 19
4.5.2 Distributed Importance Sampling . 20

4.6 Finding Heavy Hitters . 20
4.6.1 Histogram-Based Solutions . 20
4.6.2 Sketch-Based Solutions . 21

4.7 Remarks . 21

5 Quantiles 22
5.1 Cash Register Model . 22

5.1.1 Q-Digest and T-Digest . 23
5.1.2 Greenwald-Khanna Summary . 23
5.1.3 Karnin-Lang-Liberty . 24

5.2 Turnstile Model and Sliding Windows . 25
5.2.1 Dyadic Count Sketch . 25
5.2.2 Sliding Windows . 25

5.3 Distributed Streams . 25
5.3.1 Mergable Summaries . 26
5.3.2 Lazy Update Algorithm . 26
5.3.3 Importance Sampling Based Algorithm 26

5.4 Remarks . 26

6 Conclusion and Open Problems 28
6.1 Distributed Turnstile Streams . 28
6.2 Multi-Functional Summary . 28
6.3 Summaries under Differential Privacy . 28

Bibliography 30

iii

List of Tables

2.1 Summary of Notations. 4

3.1 Lower Bounds and Upper Bounds for Distinct Counting. 12

4.1 Algorithms for Frequency Estimation. 21

5.1 Algorithms for Quantiles. 27

iv

Maintaining Statistical Summaries over Dynamic Data

Yuan QIU

Department of Computer Science and Engineering

Abstract

Since the introduction of Morris Counter in 1977, decades of research have been devoted

to summary maintenance over dynamic data. For many problems, efficient summaries have

been proposed that occupy small space while providing strong accuracy guarantees. The most

important ones are statistical summaries for distinct count, frequency estimation, heavy hit-

ter and quantile problems. They are discussed under various models, including cash register

streams, turnstile streams, sliding windows and distributed streams. While the streaming con-

text is almost well-understood by matching bounds for many problems, new directions arise

in applications of summaries and their ideas. One of them is differential privacy, which guar-

antees the privacy of any user is not compromised by any post-processing of outputs. Several

summaries have been applied or extended to work under privacy constraints. In this survey,

we review the literature of maintaining statistical information over dynamic data, and propose

possible directions for future research.

v

Chapter 1

Introduction

With the ever-growing volume of data, extracting information from the whole dataset has be-
come an expensive or even infeasible job. As a solution, one can maintain a summary of the
data using small space, usually irrelevant to the data size, to provide accurate estimates of
frequently queried information. Of particular importance are summaries for statistical infor-
mation, which include distinct count, frequencies, heavy hitters and quantiles. They are the
cornerstones of describing the dataset with numerous applications. Extra attention has been
paid to statistical summaries recently due to their communication-saving nature that works
well in distributed environments.

A central challenge of summary design is maintenance through updates. This is straightfor-
ward: If the data were static, statistical information can be stored itself without the summary.
Since the introduction of the Morris Counter [1], summary maintenance has been studied for
decades. Various models emerge. There are two orthogonal directions. On the one hand, data
can be centralized or distributed among sites. On the other, the updates through time can con-
tain insertions and/or deletions, or we may be interested in only the recently arrived elements.
They outline the broad picture of the streaming literature about summary maintenance. In
this survey, we focus on statistical summaries, which are designed to estimate corresponding
statistics like distinct count, frequencies, heavy hitters and quantiles.

A related broad topic is sample maintenance. A uniform (or weighted) sample drawn from
the dataset can also utilize estimation of statistical information. But there are several con-
straints to sampling techniques: Firstly, the accuracy can be low for certain queries like distinct
count. Secondly, the sample size can be proportional to the data size if a constant sampling
rate is chosen, which can cause a large overhead. The concept is important though as many
summaries use the idea of sampling.

The idea of statistical summaries can also be used in combination with other topics, for
example, machine learning [2], security [3] and privacy [4].

The survery is organized as follows. Chapter 2 introduces background information and de-
fines relevant terms. The distinct count problem is discussed in Chapter 3, frequency estimation
and heavy hitters are discussed in Chapter 4, and quantile problems are discussed in Chapter 5.
For each problem, we discuss about centralized solutions for cash register and turnstile streams,
and for sliding windows. We also include solutions for distributed streams. For analysis, we
focus on space-error trade-off for centralized algorithms and communication-error trade-off for
distributed algorithms. Properties like update time and query time may not be compared. In
Chapter 6, we conclude by giving open problems.

1

Chapter 2

Preliminaries

In the centralized, static setting, we assume there is a multiset A of elements from a universe U .
For simplicity we assume U = [u] = {1, . . . , u} unless otherwise specified. It is sometimes easier
to represent A by its frequency vector x = (x1, . . . , xu) where xi is the number of occurrences
of i in A. The target is to estimate y = f(x) for some function f , where f can be a numerical
function like count-distinct, or a vector-valued function like top-k-values.

For numerical functions, we say a deterministic algorithm produces an ε-approximation ŷ
of y iff |ŷ − y| < εy. A randomized algorithm produces an (ε, δ)-approximation ŷ of y iff
Pr[|ŷ − y| > εy] < δ. It usually suffices to consider a constant δ as independent repetitions
decrease the fail probability exponentially. Accordingly, we abbreviate it to ε-approximation as
well.

In practice, the multiset A can be dynamic and/or distributed, which requires introducing
data stream models and distributed models.

2.1 Data Stream Models

We may assume the multiset A is initially empty, and updated through a data stream S =
s1, . . . , sn of length n. Each item si at timestamp i is a pair (a, c), which updates the frequency
of a from xa to xa+c. There are two distinct models of data streams [5, 6]. In the Cash Register
Model, c is always positive, i.e. all the updates are insertions. In the Turnstile Model, deletions
are allowed so c can be negative. In this survey, we adopt the definition of strict turnstile model,
which requires frequencies xi to be non-negative at any time. Under this constraint, an item
can only be deleted if it was inserted before. It is usually easier to consider c ∈ {±1}, where
insertions and deletions are performed one-by-one.

A special case of the turnstile model is the sliding window model. In sliding windows, we are
always interested in the latest elements. In a count-based window of size w, the active elements
are At = {st−w+1, . . . , st} at time t.1 The difficulty of turnstile model and sliding window model
are generally incomparable. For turnstile streams, arbitrary deletions are allowed, giving the
adversary much power to generate bad inputs. For sliding windows, deletions are not explicitly
given, so the algorithm needs to “remember” the lifespan of elements and automatically delete
expired ones.

Standard applications only require an output to be reported at the end of processing the
entire stream. In the strong tracking (or continuous tracking) model, an algorithm has to report
an (ε, δ)-approximation after every update.

1Here we assume c = 1.

2

2.2 Distributed Stream Model

We consider the distributed function monitoring model [7, 8]. There are k remote sites and one
coordinator. Two-way communication exists between the coordinator and each remote site,
but sites are not allowed to communicate within themselves.2 Each remote site i receives a
stream Si that updates its underlying multiset Ai, whose frequency vector is xi. We assume
Si is an insertion-only stream unless otherwise specified. We use ni to denote the current
length of Si, which changes over time. n denotes the total number of items

∑
i ni. We use Ni

and N to denote upper bounds on ni and n respectively. Bounds will be represented in N in
distributed models. The target is to estimate a function f on the union of all streams

⊎
iAi,

3

while minimizing the messages communicated.
A closely related problem of value tracking is the threshold monitoring problem, which sets

a threshold τ . The algorithm outputs 1 if f(
⊎
iAi) ≥ τ and 0 if f(

⊎
iAi) ≤ (1−ε)τ . A tracking

algorithm naturally solves this problem, while a solution to the threshold monitoring problem
indicates a solution to the tracking problem by setting τ = 1, (1 + ε), (1 + ε)2, . . . , T for some
upper bound T on f(

⊎
iAi). This requires creating O(log(1+ε) T) = O(ε−1 log T) independent

repetitions.
Round-based algorithms are usually more attractive in this model, since it better suits

industrial implementations like Flink [9]. In a round-based algorithm, the coordinator begins
a round by sending messages to each site based on the history. During the round, each site
reads the stream and sends messages from time to time to the coordinator. At some point, the
coordinator decides to end the current round. After collecting the final message from all sites,
each site resets itself and for the new round to begin.

2.3 Inequalities

We introduce useful inequalities here to help the analyses in following chapters.

2.3.1 Markov’s Inequality

Let Y be a random variable whose expectation is E[Y] Markov’s inequality says that

Pr

[
Y >

E[Y]

δ

]
< δ

We use it to bound low expectation error terms.

2.3.2 Chebyshev’s Inequality

We use Chebyshev’s inequality to bound the error of unbiased estimators. Let ŷ be an unbiased
estimator of y, By Chebyshev’s inequality we have

Pr[|ŷ − y| > εy] <
Var[ŷ]

ε2y2
.

If we can bound the variance by Var[ŷ] ≤ ε2y2δ, ŷ will be an (ε, δ)-approximation of y. Alter-
natively, we can bound the variance by ε2y2/2, and take the median over log δ−1 independent
estimators. This is sometimes space-saving. Generally, we consider δ to be a constant and
bound the variance by O(ε2y2).

2They may still communicate through the coordinator, which requires 2 messages.
3
⊎

adds up frequencies of multisets

3

2.3.3 Additive Chernoff-Hoeffding bound

Let y1, . . . yn be independent random variables bounded by ai ≤ yi ≤ bi, and Y =
∑n

i=1 yi, then

Pr
[
|Y − E[Y]| > k

]
≤ 2 exp

(
−2k2∑
i(bi − ai)2

)
.

Specifically, if the bound −b ≤ yi ≤ b holds for all i, we will have

Pr
[
|Y − E[Y]| > 2b

√
n
]
≤ 2 exp

(
−8b2n

4b2n

)
=

2

e2
.

So the error only grows by a
√
n factor if we sum n zero-mean error terms.

2.4 Notations

Table 2.1 summarizes notations used in this survey.

Table 2.1: Summary of Notations.

Notation Meaning

u Size of the universe (domain) of inputs.
[u], U The input domain, [u] = {1, . . . , u}.
x The (total) frequency vector (x1, . . . , xu).
xi The frequency vector of site i in distributed model.
n (current) Length of the stream.
ni Current length of the stream at site i.
w Window size in sliding window model.

N, (Ni) Total length of the stream (at site i) in distributed streams.
k Number of sites in distributed model.
‖x‖1 `1-norm, ‖x‖1 =

∑
i xi, abbreviated to n in cash register.

‖x‖0 `0-norm, ‖x‖0 = |{i : xi > 0}|, abbreviated to D.

ε Error factor for additive error εD, εw, εn.
δ Fail Probability.

4

Chapter 3

Distinct Count

In this chapter, we discuss the problem of distinct count estimation. In the literature, it is also
referred to as the distinct elements problem, (distinct) cardinality estimation, computing the
Hamming norm (a.k.a. `0 norm, 0-th frequency moment) etc. The target is to estimate D, the
number of distinct elements in multiset A. Given frequency vector x, D = ‖x‖0 = |{i : xi 6= 0}|.
This problem is fundamental with applications to network monitoring [10], query optimization,
OLAP and graph theory [11].

In general, there are two main types of approach [12] to the distinct counting problem:
sampling-based [13, 14, 15, 16, 17, 18, 19, 20, 21, 22] and synopsis-based [23, 24, 25, 26, 27,
28, 29, 30, 31, 32]. We focus on synopsis-based solutions as most sampling based solutions are
inaccurate [20].

3.1 Cash Register Model

First note there is a trivial upper bound of O(min{u, n log u}). One may either store every
element in the stream using O(n log u) bits, or use a bit for every element in [u] to record
whether it appears (O(u)). Throughout this section we assume ε = Ω(1/

√
u), otherwise the

trivial algorithm is already space-optimal.
Alon, Matias and Szegedy [33] showed that any deterministic algorithm that computes a

constant approximation of D must use Ω(u) bits of memory. They also showed an lower bound
of Ω(log u) bits to compute a (0.1, 1

4
)-approximation of D, which matches the upper bound

of O(log u) in [23] for constant ε. Bar-Yossef [34] included ε as a parameter, and showed for
6 ≤ ε−1 ≤ n a lower bound of Ω(ε−1). Indyk and Woodruff [35] improved it to Ω(ε−2) when

ε−1 = o(u
1
9). Woodruff [36] further relaxed the constraint to ε−1 = O(

√
u). This is the best

possible constraint for the Ω(ε−2) lower bound: otherwise the O(u) upper bound is optimal.
The lower bound was proved by a reduction to the Gap-Hamming problem. The Hamming

distance between two n-bit strings x and y is defined as H(x,y) = |{i : xi 6= yi}|. The problem
is to distinguish between H(x,y) ≤ n/2 −

√
n and H(x,y) ≥ n/2 +

√
n. There is a lower

bound [36, 37] that Ω(n) communication is needed when the two vectors are held by Alice and
Bob respectively. The reduction works as follows: Alice encodes x into n tuples, where xi is
mapped to (i, xi). She then runs the ε-approximation algorithm on the tuples, and transmit the
states to Bob. Bob encodes y similarly, and feed them into the same algorithm initialized by
states received from Alice. The full input to the algorithm contains 2n tuples, where n−H(x,y)
are duplicated ones, meaning the real distinct count is n+H(x,y) for Bob’s merged streams.
In one case, D ≤ 3n/2 −

√
n while in the other D ≥ 3n/2 +

√
n. Setting εD = Θ(

√
n), i.e.

ε = Θ(1/
√
n) suffices to solve the Gap-Hamming problem, which means the space consumption

must be Ω(n) = Ω(ε−2).
Woodruff [38] showed that for a wide range of parameters, this lower bound still holds even in

5

the average case: when items are independently randomly chosen from an unknown distribution,
instead of being provided by an adversary. Kane, Nelson and Woodruff [26] matched this lower
bound by providing an algorithm using O(ε−2 + log u) bits of memory with O(1) update time.
Taking δ into account, this implies an algorithm of O((ε−2 + log u) log δ−1) space complexity.
Jayram and Woodruff [39] showed the lower bound to be Ω(ε−2 log δ−1 + log u), namely the
dependency of log δ−1 does not multiply log u. This was matched by Blasiok [40, 41].

In strong tracking, the algorithm is required to report after every update. A standard
technique [42] is to run O(log n) independent trials to reduce the fail probability to O(n−1),
then use union bound to guarantee a constant success probability. Blasiok [40, 41] showed that
O(ε−2(log δ−1 + log log u) + log u) is a tight upper bound to the strong tracking problem.

3.1.1 Probabilistic Counting (FM-sketch)

In 1983, Flajolet and Martin [23] introduced the probabilistic counting algorithm, also known as
the FM-sketch. It is often regarded as the first summary for the distinct counting problem. The
core is to remove duplicates through hashing. The sketch is a BITMAP of length L associated
with a (perfect) hash function h : [u]→ {0, 1}L that uniformly hashes elements in the universe
to L-bit binary strings. Denote by h(a) = b0b1 . . . bL−1 the hash value of a ∈ [u]. Uniform
here means the occurrences of 0’s and 1’s are the same at each digit bi, over the image of the
function. The FM-sketch computes the position of leading 1’s of all hash values, defined as1

ρ(h(a)) = min{k : bk = 1} ,

and stores them in the BITMAP. It can be observed that repetitions of a value does not affect
the BITMAP, as their hash values are the same. Since h is uniform, ρ(h(a)) follows a geometric
distribution2 where Pr[ρ(h(a)) = k] = 2−k−1. Expected number of values hashed to position
k is therefore 2−k−1D. Intuitively, we expect the beginning of the BITMAP to be 1’s, and
the ending to be 0’s. In the middle we expect to see a mixture of 0’s and 1’s, which happens
when 2−k−1D is a constant, i.e. k = Θ(logD). Let R denote the position of leading 0 in the
BITMAP, defined as

R = min{k : BITMAP [k] = 0} .

Analysis shows that E[R] ≈ log2 ϕD, where ϕ = 0.77351 . . . , and its standard deviation
σ(R) ≈ 1.12. An immediate estimator (MLE) for D is therefore D̂PC = 2R/ϕ. To achieve
an ε-approximation, the algorithm uses a stochastic averaging technique by creating O(ε−2)
BITMAPs. Instead of independent repetitions of the algorithm, the values are randomly par-
titioned and estimated seperately. This helps reduce the number of BITMAPs to be updated
for an insertion from O(ε−2) to O(1). As the algorithm uses O(ε−2) L-bit words, its space
consumption is O(ε−2L) = O(ε−2 log u), optimal for constant ε.

There are various extensions to the Probabilistic Counting algorithm as mentioned. [33]
relaxed the assumptions on the hash function by showing that a linear hash function suffices.
[43, 10] used linear space, but their algorithm manages achieve a higher accuracy in practice
using the same actual space [44]. [45] combined it with sampling to further reduce space at the
cost of accuracy. Among all, the HyperLogLog algorithm [25] has received the most attention.

3.1.2 (Hyper)LogLog

Originating from LogLog [24], HyperLogLog [25, 27] is now the preferred summary for distinct
count implemented in many real database systems, including Redis [46], Redshift [47], Spark

1We ignore the fact that ρ(h(a)) is bounded by L.
2One may consider ρ(h(a)) as a new hash function g : [u]→ {0, . . . , L− 1} such that Pr[g(a) = k] = 2−k−1.

6

SQL [48] and Presto [49]. Compared to Probabilistic Counting, HyperLogLog improves the es-
timates to be unbiased. It also uses smaller memory units3 while achieving the same asymptotic
error bound.

The algorithm is similar, use a uniform hash function to hash values into binary strings.
But instead of maintaining the ALL positions of leading ones by BITMAP, HyperLogLog only
tracks the MAX position of leading ones M = maxa ρ(h(a)), which explains the log log space
cost. As analyzed before, each ρ(h(a)) follows a geometric distribution. So M is the maximum
of D geometrically distributed random variables, where

Pr[M ≤ k] =
∏

Pr[ρ(h(a)) ≤ k] = (1− 2−k−1)D , k ≥ 0 .

Equivalently,
Pr[M = k] = (1− 2−k−1)D − (1− 2−k)D , k ≥ 1 .

Analysis shows that D̂HLL = 2M+1 is a good estimator of D. Intuitively, the pattern 0M1 . . .
occurs with probability 2−M−1. So we expect 2M+1 distinct hash values for this event to occur,
resulting in a leading one at position M . Stochastic averaging is also involved by dividing the
input into m buckets and taking harmonic mean of these estimators. Finally, it performs bias
reduction and achieves a relative accuracy of 1.04/

√
m when using m counters, equivalently

using O(ε−2 log log u+ log u) space to provide an ε-approximation.
Using this algorithm as building block, [26] introduced space counters and applied balls-

and-bins analysis to reduce the space consumption to O(ε−2 + log u). But the algorithm is
not practical. [40, 41] further improved the dependency on δ, giving a tight upper bound of
O(ε−2 log δ−1 + log u), in terms of all u, ε and δ.

3.1.3 KMV and MinCount

HyperLogLog-like algorithms are based on bit-pattern observables [25], where the input is
hashed to binary strings and their beginning bit patterns 0ρ1 . . . are observerd. Another broad
category is based on order statistics observables, namely treating the binary strings as real values
in [0, 1], and observe the smallest value(s). The k Minimum Values synopsis (KMV) [28, 29, 30]
and MinCount summary [31, 32] are typical examples.

Assuming a uniform hash function h : [u] → [0, 1). Hashing here is only a constraint that
the same values are hashed to the same number.4 the D distinct hash values can be viewed
as D random numbers, taken independently uniformly at random from (0, 1]. Consider the
smallest hash value v1. Apparently, v1 gets smaller when D is larger. More precisely, we have

Pr[v1 ≤ x] = 1− (1− x)D ,

so E[v1] = 1/(D+1). An immediate estimator (MLE) for D is v−11 −1. However, its expectation
is infinite as v1 can be arbitrarily close to 0. In [29, 30], this is solved by using the k-th smallest
hash value vk instead of the minimum one. Their analysis shows that D̂KMV = (k−1)/vk is an
unbiased estimator of D, and its relative error is O(1/

√
k). Since k words are needed to store

the minimum hash values, the space consumption is O(k log u) = O(ε−2 log u).5 Maintaining
the smallest hash values by a min-heap, each update will cost O(log k) = O(log ε−1). [31, 32]
solve the divergence of inverse by composing it with a sublinear function like square root, and
achieve similar results.

3FM-sketch uses words of O(log u) bits, while HyperLogLog uses bytes of O(log log u) bits.
4By definition the image of a hash function is discrete. In practice we use g : [u]→ [1, u3] to hash the values

and take h(a) = g(a)/u3 as the hash value to avoid collisions. Ignoring it here makes the description simpler.
5This is not tight. O(log ε−1 + log log u) bits suffices for the hash values.

7

3.1.4 Coordinated (Distinct) Sampling

Gibbons [50, 21] proposed the coordinated (distinct) sampling algorithm to solve the poor
accuracy in answering distinct count queries using uniform samples. Similar ideas appear
in [51, 52]. In brief, the algorithm samples each distinct value with probability p for some
appropriate p, and scale the sample size by p−1 to obtain an estimator of D. Limited to
distinct counting itself, the algorithm works similar to KMV, except for that it reduces the
number of sample values by half6 wherever the budget is exceeded, so that there are always
O(ε−2) samples kept. Whereas in KMV, inserting a new hash value only requires popping one
largest hash value in the heap. It is worth mentioning that the author considered augmenting
the distinct values with tuples to support filter conditions.

3.1.5 S-BITMAP

Chen et al. [53, 54] introduced the S-BITMAP as a follow-up work of [43, 55]. This is a
linear-space algorithm whose actual space consumption is

log(1 + 2uε2)

log(1 + 2ε2/(1− ε2))
bits. The algorithm adapts its sampling probability according to the current distinct count.
Consider a BITMAP of length L, and let S track the sum of bits in the BITMAP, initialized
to 0. To insert an element a, first uniformly hash a to a bucket h(a) ∈ {0, . . . , L − 1}. If
BITMAP [h(a)] = 1, skip to the next element. Otherwise, update the bit to 1 with probability
pS, depending on the current S. Increase S by 1 if the bit is updated. This sampling procedure
also uses a as a key, so that repetitions are irrelevant. Intuitively, S is larger when the distinct
count D is larger. Also pS should be decreasing with respect to S to avoid filling the BITMAP
too quickly. It can be verified that a new distinct value will update S by 1 with probability

qS =
L− S
L

pS .

Assume the distinct values are fed to the algorithm in the order 1, 2, . . . , D. Let TS be the
index of the distinct element that increased S to S + 1, the number of distinct values between
TS+1 and TS follows a geometric distribution, that is

Pr[TS+1 − TS = t] = (1− qS)t−1qS .

A natural estimator is then D̂ = E[TS] at the last state of the bitmap. By analyzing this
Markov chain, the authors derived that assigning

pS =
L

L+ 1− S
(1 + ε2)rS , where r =

1− ε2

1 + ε2

makes the estimator unbiased with root mean square error

√
E(D̂/D − 1)2 = ε. This is not

related to D, improving algorithms like HyperLogLog. [56] extended the idea of using a Markov
chain and provided a practical algorithm with space complexity O(ε−2 log ε−1 + log u).

3.2 Turnstile Model and Sliding Windows

For turnstile model, Kane, Nelson and Woodruff showed in the appendix of [57] an lower bound
of Ω(ε−2 log ε2n). They nearly matched in [26] by an algorithm using O(ε−2 log n(log ε−1 +
log log n)) bits.

6More precisely, reduce the sample probability p by half.

8

For sliding windows, Datar el al. [58] showed an lower bound of Ω(w+ε−1 log2w). Braverman
et al. [59] improved it together with the Ω(ε−2) lower bound from cash register model to
Ω(ε−1 log2w + ε−2 logw) for ε = O(1/

√
w). They also provided a nearly optimal upper bound

of O(ε−1 log2w + ε−2 log ε−1 logw log logw). Assaf et al. [60] introduced a Sliding Bloom Filter
of size O(w logw) to work for distinct count and frequency counting simultaneously, when
ε = w−o(1).

There is also work [61] using an intermediate model: If number of distinct items at the end
of the stream is at least α−1 of the number of distinct items ever appeared during the stream,
the stream satisfies `0-α property. An cash-register stream has α = 1 and a turnstile stream is
not lower bounded. In this case, there is an upper bound of O(log n + ε−2 log(α/ε)(log ε−1 +
log log n)).

3.2.1 Augmenting FM/HLL/KMV with Counters

In a FM-Sketch-like summary, when we delete a value a whose hash value happens to have
the most leading zeros, there are two scenarios. If there are still duplicates of a so that its
xa 6= 0 after deletion, the summary needs not to be modified. Otherwise, we should find the
maximum position of leading one in remaining hash values. This is costly in the worst case as
every deletion can cause a rescan of the whole stream. A straightforward solution is to store
for each position the number of hash values having its leading one there. The idea was first
mentioned by Flajolet and Martin in their journal version of the paper [62], and stated for
similar sketches using exact or approximate counters [63, 64, 65, 66, 67, 68, 22]. Note that
the improvement from log u to log log u in (Hyper)LogLog vanishes, as a separate counter must
be maintained for each bit. A naive counter uses O(log n) space to represent the frequencies,
meaning a total space consumption of O(ε−2 log u log n). The O(log n) factor can be improved
using approximate counters at the cost of accuracy guarantee.

For sliding windows, there is no need to maintain a count as we are always interested in
the latest elements. Instead, a counter can be replaced by the timestamp of the latest element
hashed to each bit. At query time, the summary is filtered to obtain a sketch corresponding
to the latest window. The multiplicative factor to space is still O(logw) for windows of size
w, as a timestamp needs O(logw) bits to represent. This was first mentioned in [58, 69], and
restated in [70] as Sliding MinCount and in [71] as Sliding HyperLogLog.

Similar problems exist for KMV, MinCount and distinct sampling. In KMV, when we delete
an a whose hash value h(a) is among the k smallest, we need to check the frequency of a to decide
whether h(a) should be removed from the summary. If so, the summary only contains k − 1
hash values after deletion, which may violate the accuracy guarantee. In the same paper [29],
the authors included an augmented KMV synopsis (AKMV) as a solution. Similarly, each hash
value is associated with its frequency. Deletion is lazy in the sense that a 0-frequency value is not
removed from the summary until it can be replaced by a new one. In other words, the summary
always contains k hash values, where only k′ ≤ k of them have positive frequencies. The error
depends now on k′, so that a full refresh is required if k′ is too small. Similarly, augmenting with
frequencies poses an O(log n) factor to the space consumption. After augmenting frequencies,
this problem is simply top-k view maintenance, a well-studied topic. Similar sample recovery
techniques are also discussed for distinct sampling [67].

3.2.2 Approximation by Stable Distribution Sketch

[12, 72] introduced an algorithm targeting the turnstile model. Their algorithm allows negative
frequencies, where it computes the Hamming Norm. It relies on stable distributions. A stable
distribution enjoys the property that, if random variables X1, . . . Xl have stable distribution

9

with stability parameter p, then
∑

i aiXi is distributed as (
∑

i |ai|p)1/pX0, where X0 is also a
random variable with p stable distribution.

The sketch unit is simply sk(x) =
∑

i cixi for frequency vector x, where each ci is drawn in-
dependently from a p stable distribution. By the property, sk(x) is distributed as (

∑
i |xi|p)1/pX,

for a random variable X chosen from a p stable distribution. This allows us to estimate
‖x‖pp =

∑
i |xi|p. When p is small, it is a good approximation of the Hamming Norm. To see

it, note ‖x‖∞ ≤ n, we have (define 00 = 0)

‖x‖0 =
∑
i

|xi|0 ≤
∑
i

|xi|p ≤
∑
i

np|xi|0 = np‖x‖0

If we set np ≤ 1 + ε, equivalently p ≤ log(1 + ε)/ log n, ‖f‖pp will be a (1 + ε)-approximation of
‖f‖0. The accuracy guarantee is achieved by taking the median over O(ε−2) independent sketch
units, which means a space consumption of O(ε−2 log2 n) for constant δ [67]. Nevertheless,
generating strictly stable distributions is costly. This puts a constraint to this solution.

3.2.3 Nearly Optimal Algorithm on Sliding Windows

Braverman et al. [59] gave a near optimal algorithm for sliding windows using [40] as a sub-
routine. Their counters are similar to [50, 21], which are of size O(ε−2 log u). As was in [40],
O(log logw) repetitions are used to reduce the variance. They observed the counters can be
maintained incrementally for partial windows (t1, t) ⊃ (t2, t) ⊃ . . . at current time t, where
t1 < t2 < · · · < t. It suffices to use units of size O(log ε−1 + log logw) to represent the position
of the last partial window containing bit 1, accompanied by the starting timestamp. With
encoding applied, the final bound achieved was O(ε−2 logw log ε−1 log logw + ε−1 log2w). This
is optimal up to log ε−1 and log logw factors.

3.3 Distributed Streams

The hardness of distinct counting in the distributed setting is that it is cannot be obtained by
simple arithmetic operations on local estimates. A lower bound for the threshold monitoring
problem also holds for the tracking problem. Cormode, Muthukrishnan and Yi [73, 8] showed
an Ω(k) lower bound when ε ≤ 1/4 and u ≥ k2. The lower bound also applies to one-shot
algorithms. In the same paper they presented an algorithm using O(k(log u + ε−2 log ε−1))
bits of communication for monitoring. Arackaparambil, Brody and Chakrabarti [74] showed
another lower bound of Ω(ε−1) when ε ≤ 1/2. They also show that if the algorithm is round-
based, the lower bound can be improved to Ω(ε−2). Chakrabarti and Regev [75] removed the
constraint and showed the lower bound to Ω(ε−2) applies to all one-pass algorithms. Woodruff
and Zhang [76] improved these bounds (i.e. Ω(k+ε−2)) to Ω(kε−2/ log(kε2)) when kε2 > 1, and
later [77] to Ω(k(ε−2+logN)).7 This is a tight lower bound for one-shot algorithms: Since there
is a centralized algorithm [26] using O(ε−2 + log u) space, this implies a distributed algorithm
using O(k(ε−2 + log u)) bits of communication. The sites consecutively run the algorithm on
their input and pass the state to the next player.

If the stream allows arbitrary deletions, [74] showed that no good upper bound can be
provided: the lower bound is proportional to the length of the stream.

3.3.1 Merging FM/HLL/KMV

FM-sketch, HyperLogLog and KMV are all mergeable summaries [78], provided that the same
hash functions are used among all sites. This comes from the associative nature of the max /min

7We consider ε = Ω(1/
√
u).

10

operator. A trick [79] in merging KMV summaries is to use minj maxi vi,j = minj vm,j as a
threshold where hash values {vi,j}mi=1 are reported by site j. This may keep more values in
the merged summary compared to finding the m minimum values among the all hash values
reported.

They are desirable in one-shot setting, but merging the summaries for every update is clearly
unnecessary and inefficient.

3.3.2 Lazy Update Algorithms

To save communication in the distributed setting, a natural idea is to communicate with the
coordinator only when local changes are too large. [80] formalized this by giving a subroutine
for monitoring distinct counts over the union of distributed streams. Let Si be the set of distinct
of elements on site i. Each site also maintains an approximate set Ŝi, which is synchronized
with the coordinator. To report the distinct count, the coordinator calculates ∪Ŝi. As long as
|Si− Ŝi| < ε, | ∪i Si|− |∪i Ŝi| ≤ |∪i Si−∪iŜi| ≤

∑
i |Si− Ŝi| ≤ kε if there are k sites. Similarly,

| ∪i Ŝi| − | ∪i Si| ≤ kε if |Si − Ŝi| < ε. This implies an intuitive algorithm as follows: Charge
φ+
i (e) = 1 for (inserting) an element e ∈ Si − Ŝi. Charge φ−i (e) = 1 for (deleting the last copy

of) an element e ∈ Ŝi − Si. The other elements are not charged. Whenever
∑

e φ
+
i (e) > ε or∑

e φ
−
i (e) > ε, synchronize with the coordinator so that Ŝi = Si. The communication cost is

high as a synchronize is needed upon receiving every ε items in the worst case. An improvement
was made due to the fact that frequent items may appear in multiple streams. For any item
e ∈ ∪iŜi, the coordinator computes the number of streams containing it, C(e) = |{i : e ∈ Ŝi}|.
If C(e) > τ , the item is frequent, and the coordinator also maintains a lower bound θ(e) where
θ(e) < C(e) < 4θ(e). Now if θ(e) > 0, we can set φ+

i (e) = 0 since e is already in ∪iŜi. Also
we can set φ−i (e) = 1/θ(e) because there are at least θ(e) repetitions of e. They must all be
deleted for e to be removed from the output. This is inefficient in the worst case, if there is
no duplicated elements. But the output is a set instead of a count, which can support further
operations such as intersections.

Cormode et al. [7] designed a distinct count tracking algorithm using similar heuristics. Each
update applies on the local sketch. If the local distinct count estimated is above a threshold,
the sketch is synchronized with the coordinator. The algorithm can achieve O(ε−3k2 log u)
communication.

3.3.3 Distributed Distinct Sampling

Cormode et al. [73, 8] improved the bound to O(k(ε−2 log ε−1 + log u)) for the monitoring
problem, using ideas from distinct sampling [50, 21]. O(k log u) communication is needed to
transmit the hash functions to each site. Given a parameter τ , the algorithm uses a sampling
probability of p = Θ(ε−2τ−1) to perform distinct sampling. The sampled values will be sent
to the coordinator once they appear locally. To save communication, instead of sending the
real value using log u bits, it suffices to send hash values in a domain of size O(ε−4), whose
values can be represented using O(log ε−1) bits. Collisions only affects the fail probability by
a constant. τ distinct values are received before the algorithm terminates, which explains for
the communication of O(ε−2 log ε−1) on each site It is also clear that the coordinator essentially
receives a distinct sample from remote sites (represented by hash values) at sampling rate p,
so that an estimator can be obtained by scaling the sample size by p−1. It is obvious that it
provides an unbiased estimator of D, where the variance is bounded by D/p. Thus setting
p = Θ(ε−2τ−1) suffices to bound the error by ετ .

This implies a tracking algorithm. We divide the tracking into rounds. Within each round,
τ is always an upper bound of D so the communication is bounded. Whenever the algorithm

11

monitors D > τ , a new round is started by doubling τ . This guarantees that τ < 2D always
holds, which is necessary to bound the variance. There are only O(logD) = O(log u) rounds.
Within each round, O(k/ε2) messages are communicated.8

3.4 Remarks

Table 3.1 summarizes the lower bounds and upper bounds on space/communication in different
models. Experimental evaluations can be found in [44]. Detailed discussions can be found
in [81, 82, 83].

Table 3.1: Lower Bounds and Upper Bounds for Distinct Counting.

Model Lower Bound Upper Bound Remarks

One-Shot
Centralized

Ω(log u) [33] O(log u) [23] Constant ε, δ

Ω(ε−2 + log u) [36] O(ε−2 + log u) [26] Constant δ

Ω(ε−2 log δ−1 + log u) [39] O(ε−2 log δ−1 + log u) [41] Optimal

Distributed Ω(k(ε−2 + log u)) [77] O(k(ε−2 + log u)) [26] Optimal

Tracking

Cash Register
Ω(log u) [33] O(log u) [23] Constant ε, δ

Ω(log δ
−1+log log u
ε2

+ log u) [41] O(log δ
−1+log log u
ε2

+ log u) [41] Optimal

Sliding Window
Ω(log

2 w
ε

+ logw
ε2

) [59] O(log
2 w
ε

+ logw
ε2

(log ε−1 log logw)) [59] Nearly Optimal

O(w logw) [60] ε = w−o(1)

Turnstile Ω(ε−2 log ε2u) [57] O(ε−2 log u(log ε−1 + log log n)) [26] Nearly Optimal

Distributed Ω(k(ε−2 + log u)) O(kε−2 log ε−1 log u) [8]

It was shown [74] that solving the distinct count tracking problem under distributed update
streams is hard in the worst case. Useful heuristics may be applicable in this setting. For
example, [84] separately counted the number of remaining items and the number of deleted
items. There is also a gap in strong tracking of the distinct count in insertion-only streams.

8Hash functions only needs to be sent once.

12

Chapter 4

Frequency Estimation and Heavy
Hitters

In this chapter, we study two closely related problems: Frequency Estimation and Finding
Heavy Hitters. We first study the frequency estimation problem in its basic form: point queries.
Given a frequency vector x, f(x, i) = xi returns the frequency of item i in the stream. Similar
to the distinct count problem, an exact solution is to use O(u log n) bits to store the histogram.

For this problem, we use a different definition of ε-approximation. Requiring Pr[|x̂i − xi| >
εxi] < δ is obviously too restrictive: the algorithm must identify all zero-frequency items and
singletons when ε < 1,which is not realistic in small space and usually unnecessary. Instead, we
let the error magnitude depend on ‖x‖ =

∑
i |xi|. We say an algorithm has error ε‖x‖1 if for

all i the estimate x̂i satisfies Pr[|x̂i − xi| > ε‖x‖] < δ, i.e. ‖x̂− x‖∞ ≤ ε‖x‖ with probability
1 − δ. Under this setting , we are free to return 0 for any value whose frequency xi ≤ ε‖x‖.
Only O(ε−1) non-zero frequencies needs to be reported, which is achievable using small space.
This topic is therefore referred to as finding frequent items sometimes.

4.1 Basic Counting

We first introduce the basic counting problem. The target is to count the occurrence of 1’s in
a bit stream. It can be regarded as frequency estimation on a domain U = {0, 1}. A trivial
algorithm uses O(log n) bits. The Morris Counter [1, 85, 86] for this problem was the first
streaming algorithm. It uses a counter c with a parameter 1 < b ≤ 2. Each bit 1 will increase
the counter with probability b−c. An estimate of x1 is X = (bc − 1)/(b − 1). To analyze
the accuracy, let random variable Ci denote the value of the counter when i bits are inserted.
C0 = 0 deterministically. The estimator is then Xi = (bCi − 1)/(b− 1). We have

E[Xi] =
∑
c

Pr[Ci = c] · b
c − 1

b− 1

= (b− 1)−1
∑
c

(Pr[Ci−1 = c] · (1− b−c) + Pr[Ci−1 = c− 1] · b−c+1)(bc − 1)

= (b− 1)−1
∑
c

Pr[Ci−1 = c] · ((1− b−c)(bc − 1) + b−c(bc+1 − 1))

= (b− 1)−1
∑
c

Pr[Ci−1 = c] · (bc + b− 2)

=
∑
c

Pr[Ci−1 = c] · b
c − 1

b− 1
+
∑
c

Pr[Ci−1 = c] = E[Xi−1] + 1 .

13

By E[X0] = E[(bC0 − 1)/(b− 1)] = 0, we conclude E[Xi] = i, thus Xi is an unbiased estimator.
Similarly we can derive E[X2

i] = (b + 1)i(i − 1)/2, so its variance is bounded by Var[Xi] =
(b+1)i(i−1)/2−i2 ≤ (b−1)i2/2. Setting b = 1+2ε2δ suffices to bounds the variance to provide
an (ε, δ)-approximation. Correspondingly, the counter c can be as large as 1 + logb(b − 1)n =
O(ε−2δ−1 log ε2δn), thus only requires O(log ε−1+log δ−1+log log n) bits to represent, improving
over the O(log n) upper bound. It is recently shown [87] that a slight modification of the
algorithm will make it optimal matching the lower bound of Ω(min{log n, log ε−1 +log log δ−1 +
log log n}).

The Morris Counter also implies a frequency estimation protocol: create O(u) counters for
each item in the universe, and update the corresponding counter for values in the stream. This
improves the space consumption to O(u log log n) compared to the exact algorithm for constant
ε and δ.

4.2 Cash Register Model

Bose et al. [88] showed that for any randomized algorithm using m counters, there is an error
lower bound of Ω(‖x‖1/m). In other words, to achieve an ε‖x‖1 guarantee, we must use
Ω(ε−1) counters, or Ω̃(ε−1) bits.1 Several Algorithms match this lower bound using O(ε−1)
counters, including MG Summary [89], SpaceSaving [90, 91], Count Sketch [92] and Count-Min
Sketch [93]. As there are matching deterministic algorithms, this is also a tight deterministic
lower bound up to log factors.

4.2.1 Misra-Gries Summary and SpaceSaving

The Misra-Gries (MG) summary [89] originates from the majority algorithm by Moore and
Boyer [94, 95]. The algorithm is deterministic. View the MG summary as a histogram. On
insertion, it updates the corresponding frequency. Wherever the histogram contains more than
m = ε−1 non-zero entries, simultaneously reduce all non-zero frequencies until (at least) one of
them becomes 0 and is removed. When the algorithm terminates, it reports the histogram.

The correctness can be verified as follows. Each frequency reduction process simultaneously
reduces m counters, thus reduces the sum of frequencies in the summary by m. This can happen
at most ‖x‖1/m times. So for each value i, its final reported value x̂i satisfies xi − ‖x‖/m ≤
x̂i ≤ xi, which means |x̂i − xi| ≤ ε‖x‖1.

Since there are only O(ε−1) non-zero frequencies at any time of the algorithm, they can be
maintained by a dictionary of size O(ε−1 log un). For update time, the original paper [89] used
a binary search tree for the dictionary to achieve O(1) amortized update time. [96] showed the
update time can be improved to worst case O(1) and [97] implemented the dictionary using a
hash table.

Many algorithms use similar ideas to MG summary, including Sticky Sampling, Loosy
Counting [98] and SpaceSaving [90, 91]. In SpaceSaving, instead of deducting frequencies
when the space budget is reached, the algorithm replaces the value with minimum frequency
by the newly inserted value, and add its frequency to the new one. This is identical to a MG
summary with m − 1 counters, if we subtract every frequency by the minimum frequency in
the dictionary [78].

The estimator can be made unbiased [99].

1We suppress log factors in Õ and Ω̃.

14

4.3 Turnstile Model and Sliding Windows

An Ω̃(ε−1) lower bound is inherited from the cash register model for any randomized algorithm,
which is also matched by Count-Min sketch [93] and Count Sketch [92].

The MG summary does not handle deletions, so there is a gap between the Õ(ε−2) deter-
ministic upper bound [100] and this lower bound. Ganguly [101] matched this up to log factors
by showing an Ω(ε−2 log−1 ε−1 log u log n) lower bound.

For sliding windows, Arasu and Manku [102] gave an algorithm using O(ε−1 log2 ε−1) space.
Lee and Ting [103] improved it to O(ε−1), at the cost of a higher query time. Zhang and
Guan [104] solved it using O(ε−1) space with O(1) update time. Similar results are achieved
by Hung et al. [105]. Ben-Basat et al. [106] further improved the query time to O(1).

4.3.1 Count-Min Sketch

Count-Min sketch [93] is an efficient data sketch for frequency estimation. It is a linear transform
of the frequency vector, which can be represented by a matrix. Each level of a Count-Min
sketch is an array CM of L counters associated with a pairwise independent hash function
h : [u]→ [L]. Updating an element a ∈ [u] simply changes the frequency of counter CM [h(a)]
by the same amount, allowing the algorithm to support deletions. Intuitively, each bucket i
stores CM [i] =

∑
j:h(j)=i xj. The estimator for xa is x̂a = CM [h(a)]. It is easy to see that

x̂a ≥ xa. The surplus is

x̂a − xa =
∑

j 6=a:h(j)=h(a)

xj =
∑
j 6=a

xj · I[h(j) = h(a)] .

Since h is pairwise independent, Pr[h(j) = h(a)] = 1/L. So we have in expectation

E
[
x̂a − xa

]
=
∑
j 6=a

xj/L ≤ ‖x‖1/L .

By Markov’s inequality,

Pr

[
x̂a − xa ≥ 2‖x‖1/L

]
≤ 1

2
.

Taking L = 2ε−1 provides an (ε, 1/2)-approximation. Using log δ−1 independent levels of
count sketch will boost the success probability to 1 − δ. The space consumption is there-
fore O(ε−1 log δ−1) words. Since CM [h(a)] is always an upper bound of xa, the minimum is
taken over all the independent estimates.

The analysis can be tightened by using residual norm ‖x‖res1 , which is ‖x‖1 subtracting
O(ε−1) largest frequencies. We only need to fail the algorithm when h(a) = h(j) for some j
within the O(ε−1) most-frequent values. For each a, this fails the algorithm with probability
1 − (1 − 2ε)O(ε−1), which is a constant that can be restricted to δ through repetitions. This
helps explain why the Count-Min sketch usually performs better than its worst-case bound.

Count-Min sketch always produces an upper bound, so its estimator is biased. Observing
that E

[
CM [h(a)]

]
= xa +

∑
j 6=a xj/L = (L− 1)xa/L+ ‖x‖1/L, the bias can be removed using

the estimator

x̂unbiaseda =
L · CM [h(a)]− ‖x‖1

L− 1
= CM [h(a)]−

∑
i 6=h(a)CM [h(i)]

L− 1
.

In other words, (
∑

i 6=h(a)CM [h(i)])/(L − 1) is an estimator for the (upward) bias. Since it is
specific to hash function h, it does not concentrate over repetitions. However, this helps us to

15

provide a bound using ‖x‖2 =
√∑

i x
2
i . We see that

Var[x̂unbiaseda] = Var

[
L · CM [h(a)]− ‖x‖1

L− 1

]
=

(
L

L− 1

)2

Var[CM(h(a))]

=

(
L

L− 1

)2∑
j 6=a

Var[xj · I[h(j) = h(a)]]

=
L2

(L− 1)2

∑
j 6=a

x2j ·
L− 1

L2

≤ ‖x‖
2
2

L− 1
.

Apply Chebyshev’s inequality, we have

Pr

[
|x̂unbiaseda − xa| ≥

√
ε‖x‖2

]
≤ ‖x‖

2
2

L− 1
· 1

ε‖x‖22
=

1

ε(L− 1)
.

Taking L = 1 + 2ε−1 will make the fail probability 1/2, which can be boosted through log δ−1

independent trials. In this case, the error bound is
√
ε‖x‖2 using only log δ−1 more counters

compared to achieving an ε‖x‖1 error. When the frequencies are flat, for example when xi = v
for all i, ‖x‖2 =

√
v‖x‖1 � ‖x‖1. the

√
ε‖x‖2 bound is better.

It has also been extended [107] to work for sliding windows.

4.3.2 Count Sketch

Count Sketch [92] can be regarded as an unbiased version of Count-Min sketch. Each level still
has L counters CS[1], . . . , CS[L]. In addition to a pairwise independent hash function h : [u]→
[L], it also uses a pairwise independent hash function g : [u] → {±1}. Inserting an element
a ∈ [u] updates counter CS[h(a)] to CS[h(a)] + g(a). It is straightforward to handle updates
with frequencies larger than 1, or deletions. Similarly, we derive CS[i] =

∑
j:h(j)=i xj · g(j). An

estimator for xa is x̂a = CS[h(a)] · g(a). We have

x̂a =
∑

j:h(j)=h(a)

xjg(j)g(a)]

= xag
2(a) +

∑
j 6=a

xjg(j)g(a)I[h(j) = h(a)]

Since g2 ≡ 1, and g is pairwise independent, E[x̂a] = xa +
∑

j 6=a xjE[g(j)]E[g(a)]E
[
I[h(j) =

h(a)]
]

= xa, proving the estimator is unbiased.
Similar to Count-Min sketch, there are both `1 and `2 bounds. Note that

E

[
|x̂a − xa|

]
≤
∑
j 6=a

xjE

[
|g(j)g(a)| · I[h(j) = h(a)]

]
=
∑
j 6=a

xj Pr[h(j) = h(a)] =
∑
j 6=a

xj/L .

By Markov’s inequality, we have

Pr

[
|x̂a − xa| ≥ 2‖x‖1/L

]
≤ 1

2
.

16

To achieve an (ε, δ)-approximation, we set L = 2ε−1 and create O(log δ−1) repetitions to apply
the median estimator. Although both Count-Min sketch and Count Sketch use O(ε−1 log δ−1)
counters to achieve O(ε‖x‖1) error, the hidden constants are worse in Count Sketch. This is
due to the difference between taking min and a median. For Count-Min, the algorithm fails if
all the repetitions fail, while for Count Sketch, it fails when half the repetitions fail.

For an `2 bound, observe x̂a is already unbiased. Its variance is

Var[x̂a] =
∑
j 6=a

x2jVar
[
g(j)g(a)I[h(j) = h(a)]

]
=
∑
j 6=a

x2j

(
E
[
g2(j)g2(a)I2[h(j) = h(a)]

]
− E2

[
g(j)g(a)I[h(j) = h(a)]

])
=
∑
j 6=a

x2j(Pr[h(j) = h(a)]− 02) = ‖x‖22/L .

Apply Chebyshev’s inequality, we see

Pr

[
|x̂a − xa| ≥

√
ε‖x‖2

]
≤ ‖x‖

2
2

L
· 1

ε‖x‖22
≤ 1

εL
.

Taking L = 2ε−1 will make the probability 1/2, which can be boosted by O(log δ−1) repetitions.
Same to the Count-Min sketch, the bound is O(

√
ε‖x‖2) when using O(ε−1 log δ−1) counters.

4.3.3 Sliding-Windows Sketches

Arasu and Manku [102] introduced a framework that turns cash register algorithms into sliding
window ones. This is similar to the dyadic ranges to be introduced later. To ease the proof, we
assume a fixed window length w. The stream is duplicated L times, denoted by level 0, . . . , L.
At level 0, the stream is partitioned into blocks of size c0 = Θ(εw). Each block at level i is the
union of two adjacent blocks at level i− 1, thus contains 2i epochs, or ci = Θ(2iεw) elements.
Correspondingly we only need L = O(log ε−1) levels. Level i contains w/ci = Θ(1/(2iε)) blocks,
so O(ε−1) blocks in total. A block is

• Active, if all its elements are inside the current window.

• Under construction, if some of its elements have not arrived yet.

• Expired, if some of its elements are out of the current window.

It can be verified that the window can always be decomposed into O(L) active blocks, with
at most two partial blocks at level 0 that are under construction or has expired. The error
due to incomplete blocks can be bounded by O(εw) as the block only contains O(εw) elements.
A natural idea is to let each block hold an ε-approximation protocol. Summing over the
decomposition will generate an O(εw) estimation. This uses O(ε−2) space as there are O(ε−1)
sketches of size O(ε−1). An improvement can be made by observing that there are more blocks
at bottom levels, so we may assign a larger ε for them to save space. The problem now becomes
to minimize the space consumption of

∑
i(w/(ciεi) subject to the error

∑
i εici = O(εw). It

is optimized when εi ∝ 1/ci, i.e. when εici = Θ(εw log−1 ε−1). The space consumption is
O(ε−1 log2 ε−1).

17

4.3.4 Window Counter

[103] proposed the idea of window counter. A counter is separately maintained for each value
v, using O(xv/(εn)) space, so the total space consumption is O(ε−1). Each counter “samples”
the position of every λ items, so that the error due to sampling is at most 2λ. The authors
further combined it with the MG summary to show that most counters are unnecessary to be
stored. Similar ideas are used in [105].

4.4 Distributed Multisets

In distributed setting, we denote by xi the frequency vector at site i, and x to denote the
frequency vector of all elements, namely the frequency of j ∈ [u] is xj =

∑k
i=1 xi,j. The error

threshold is set to ε‖x‖1. Note that computing ‖x‖1 requires O(k) messages of O(log n) bits,
which we do not include in the following bounds. We first discuss frequency estimation in static
setting.

4.4.1 Deterministic Solution

There is a simple deterministic solution to the problem: each site reports all values whose
frequency is above ε‖x‖1/k. Unreported values are assumed by the coordinator to have 0
frequency. The cumulative error is bounded by k · ε‖x‖1/k = ε‖x‖1. For site i, there are at
most ‖xi‖1/(ε‖x‖1/k) = (k/ε)(‖xi‖1/‖x‖) values above the threshold, the total communication
is bounded by

k∑
i=1

k

ε
· ‖xi‖1
‖x‖1

= k/ε

item-frequency pairs, which consumes O(log un) bits, provided ‖x‖ was pre-computed and sent
to all sites. This is conjectured to be the best deterministic algorithm. Equivalently, we may
apply any approximate algorithm above to achieve an ε‖xi‖1 guarantee locally using O(ε−1)
counters, and send the states using O(k/ε) messages to obtain error

∑
i ε‖xi‖1 = ε‖x‖1. Both

the MG summary and Count(-Min) Sketch are mergable [78]

4.4.2 Coin-Flip Sampling

To save communication, a natural idea is to apply sampling. One of the simplest techniques is
coin-flip sampling, namely independently sample each item with the same probability. Let p be
the probability of sampling any item j, and ‖y‖ be the frequencies in the sample, it is known
that x̂j = yj/p is an unbiased estimator for xj. Since yj ∼ B(xj, p), Var[yj] = p(1− p)xj,

Var[x̂j] =
Var[yj]

p2
≤ xj/p ≤ ‖x‖1/p .

Therefore by taking p = 2ε−2‖x‖−11 , the variance is bounded by ε2‖x‖21/2, which guarantees an
ε‖x‖1 error with probability 1/2 by Chebyshev’s inequality. The communication is O(p‖x‖1) =
O(ε−2) messages of O(log u) bits, provided that ‖x‖1 was already computed and sent to all sites.

It can be observed that the inequality xj ≤ ‖x‖1 in the analysis is quite loose. Indeed,
setting pj = 2xj/(ε‖x‖1)2 is sufficient for the same the analysis. The problem is that xj is the
value to be estimated, thus we cannot use this exact probability in coin-flip sampling. Yet this
call for a different sampling probability for each value, depending on its frequency.

18

4.4.3 Importance Sampling

Zhao et al. [108] introduced a frequency-aware sampling framework. Sampling is performed on
local frequencies instead of on items. Specifically, site i reports the frequency of item j xi,j = x
to the coordinator with probability p(x). The coordinator estimates x̂i,j = x/p(x), if value x
is received, and 0 otherwise. Similar to the analysis before, x̂i,j is unbiased and its variance is
Var[x̂i,j] = x2/p(x) − x2. Summing over all sites, the frequency estimator x̂j =

∑
i x̂i,j is also

unbiased with variance

Var[x̂j] =
k∑
i=1

x2i,j
p(xi,j)

−
k∑
i=1

x2i,j ≤
k∑
i=1

x2i,j
p(xi,j)

− x2j/k .

The problem now becomes finding the optimal function p(x) to achieve a trade-off in minimizing
both the variance and the communication

∑k
i=1 p(xi,j). Observing that by Cauchy-Schwarz

inequality,
k∑
i=1

x2i,j
p(xi,j)

·
k∑
i=1

p(xi,j) ≥

 k∑
i=1

√
x2i,j
p(xi,j)

p(xi,j)

2

= x2j ,

the best setting must choose
x2i,j
p(xi,j)

∝ p(xi,j), that is p(xi,j) = cxi,j. Correspondingly the total

communication for j is cxj and the variance is bounded by Var[x̂j] = −x2j/k+ xj/c ≤ k/(4c2).

To bound the variance by ε2‖x‖21/2, it suffices to set c =
√
k/(
√

2ε‖x‖1). This is the importance
sampling function in [109]. The name comes from setting p(x) proportional to x, where p(x) =√
kx/(ε‖x‖1).2 The total communication is then O(

√
k/ε) pairs. They also show that by using

a Bloom Filter, communication can be reduced to O(
√
k/ε) bits for the same guarantee. This

was proved optimal [110, 76].3

4.5 Distributed Streams

Since the total frequency is simply the sum of all local frequencies, as long as the coordinator
tracks the local frequency of j at site i within εni error, it also tracks the total frequency within
εn error. Yi and Zhang [111] solves it by an optimal deterministic algorithm with O(k/ε · logN)
communication. Huang, Yi and Zhang [112] improved the upper bound to O(

√
k/ε·logN) using

importance sampling as a building block and showed it is optimal: Ω(
√
k/ε · logN) messages

must be communicated.

4.5.1 Lazy Update Algorithm

[111] can be seen as a streaming version of the exact algorithm. The coordinator maintains n̂,
an ε-approximation of n. To guarantee this, each site sends ni to the coordinator wherever it
increases by a factor of (1 + ε), denote it by n̄i. The coordinator uses n̄i to approximate ni
until it receives another message. By definition, it is guaranteed that n̄i ≤ ni ≤ (1 + ε)n̄i. This
can be achieved using O(log1+εNi) communication at each site, thus consumes O(k/ε · logN/k)
communication in total.

The algorithm then divides the tracking into O(log1+εN) rounds: Within each round, the
coordinator uses O(k) communication to ensure each site hold the same n̄. When n̂ ≥ (1 + ε)n̄,
the round ends. Each site ensures that xi,j − x̂i,j ≤ εn̄/k ≤ εn/k, by sending the latest
xi,j to the coordinator as x̂i,j when the above condition fails. The error guarantee is trivial.

2We assume p(x) is always upper bounded by 1.
3For k = ω(ε−2), the coin-flip sampling is optimal.

19

For communication, note that each round only contains εn̄ items, thus synchronization can
only happen k times. Therefore O(k) messages are sent within each round, resulting in an
O(k/ε · logN) bound. This is also shown to be the optimal deterministic algorithm.

4.5.2 Distributed Importance Sampling

[112] extends the idea of importance sampling to the distributed setting. We first show how
the algorithm tracks n using O(

√
k/ε · logN) communication.

Whenever an item arrives at site i, the site sends the latest ni to the coordinator with
probability p. Denote this value by n̄i. It is easy to see that the number of out-of-sync items
Y = ni − n̄i follows a geometric distribution: It is 0 if the last item ni is sampled; 1 if the last
but one value was sampled, but the last value is not, etc. We have Pr[Y = y] = (1−p)yp.4 Since
E[Y] = p−1 − 1 and Var[Y] ≤ p−2, it follows that n̂i = n̄i + p−1 − 1 is an unbiased estimator
of ni with its variance bounded by p−2. This is achieved using O(pNi) communication. It
is straightforward that n̂ =

∑
i n̂i is an unbiased estimator of n, whose variance is bounded

by k/p2. Thus setting p = Θ(
√
k/εn) suffices to provide an ε-approximation by Chebyshev’s

inequality.
Again the problem is that n is the value we want to estimate. To solve it, the authors

used the deterministic algorithm in the previous section to track n′ where n′ ≤ n ≤ 2n′. This
only consumes O(k logN) communication since ε = 1. Whenever n′ doubles, the coordinator
initiates a new round by broadcasting p =

√
k/εn′ to all sites to be the sampling probability

in this round. Since n can be as large as 4n′ within a round, the communication in the
round is bounded by O(

√
k/ε) with constant probability. Counted over all rounds, it sums to

O(
√
k/ε · logN). It is also easy to see that the same sample probability and estimator suffice

to estimate individual frequencies: each xi,j is estimated within εn error, using O(
√
k/ε · logN)

communication. The authors also show that by approximately counting local frequencies, the
space consumption can be reduced to O((ε

√
k)−1).

4.6 Finding Heavy Hitters

A closely related problem to frequency estimation is finding heavy hitters. Denote by n = ‖x‖1.
In a φ-heavy hitter query, the algorithm must report all values whose frequency is at least φn,
and must report no value whose frequency is below (φ− ε)n.

4.6.1 Histogram-Based Solutions

Many frequency estimation protocols release histograms that naturally answer heavy hitter
queries. For example, the MG summary releases a histogram where xi− εn ≤ x̂i ≤ xi. We only
need to report values with x̂i ≥ (φ− ε)n.

• Reported values satisfy xi ≥ x̂i ≥ (φ− ε)n;

• If xi ≥ φn,we have x̂i ≥ xi − εn ≥ (φ− ε)n and the value is reported.

It solves the heavy hitter problem for any φ > ε. Indeed, if we have any any ε/2-approximation
frequency estimation protocol where |x̂i − xi| ≤ εn/2, using x̂′i = x̂i − εn/2 will guarantee
xi − εn ≤ x̂′i ≤ xi. We can use it to answer the heavy hitter query similarly.

This also works in the distributed case: as long as the coordinator tracks n and all frequencies
within εn/3 error, it can also solve the heavy hitter problem.

4A more careful analysis takes into account that Y is upper bounded by ni. We ignore this.

20

4.6.2 Sketch-Based Solutions

For sketch-based solutions like count sketch and count-min sketch, no histogram is explicitly
stored. Obtaining all frequencies consumes O(u) time, which is inefficient. Below we show
using a supporting data structure can reduce this cost. This applies to any solution that can
provide an ε-approximation for point queries.

In the cash register model, it is easy as ‖x‖1 always increases. We only need to perform a
query after every insertion to obtain the latest estimated frequency x̂i of the inserted item, and
track the values with x̂i ≥ φn through a min-heap.

In the turnstile model, a solution is to use dyadic intervals [113], as was described in [114].
In a dyadic data structure, the leaf nodes (level 0) are individual elements. Level j contains
dummy elements, each representing 2 elements from level j − 1. The i-th item at level j can
be represented by an interval [(i− 1)2j + 1, i2j], for j = 0, . . . , log u and i = 1, . . . , u/2j.5 The
intervals can be organized into a full binary tree: the frequency of a parent node is the sum of
frequencies of both its children. A sketch is maintained for each level, thus increasing the space
consumption by O(log u). At query time, we perform a breadth-first search, only expanding
nodes whose frequency is at least (φ − ε/2)n. Subject to all frequency estimations are (ε/2)-
approximations, any interval containing a heavy hitter will be expanded. Therefore all heavy
hitters are found. There are only (φ − ε/2)−1 = O(ε−1) nodes to be expanded at each level,
leading to a query time of O(ε−1 log u) multiplied by the query time of the sketch.

4.7 Remarks

Table 4.1 is a summary of algorithms. Experimental evaluations can be found in [115]. For
simplicity we refer to space and communication in units of words (instead of bits).

Table 4.1: Algorithms for Frequency Estimation.

Model Algorithm Space/Communication Error Guarantee Properties

Deterministic

Cash Register MG Summary [89] O(ε−1) ε‖x‖1 always lower bound

Turnstile CR-Precis [100] O(ε−2) ε‖x‖1

Sliding Window Lee & Ting [103] O(ε−1) εw

Distributed Tracking Yi & Zhang [111] O(k/ε · logN) ε‖x‖1 When k = O(ε−2)

Randomized

Turnstile Count-Min Sketch [93] O(ε−1) min{ε‖x‖1,
√
ε‖x‖2} always upper bound

Turnstile Count Sketch [92] O(ε−1) min{ε‖x‖1,
√
ε‖x‖2} unbiased

Distributed One-Shot Importance Sampling [109] O(
√
k/ε) ε‖x‖1 When k = O(ε−2)

Distributed Tracking Huang et al. [112] O(
√
k/ε · logN) ε‖x‖1 When k = O(ε−2)

5Assume u is a power of 2.

21

Chapter 5

Quantiles

For ordered data, quantiles are useful to provide an overlook of the data distribution. For
example, the most important quantile, median, is a representative of the data that is robust
against outliers. Formally, let [u] = {1, . . . , u} be an ordered domain, and x be the frequency
vector where ‖x‖1 = n. The rank of value i ∈ [u] is defined as rank(i) =

∑
j<i xj: the total

frequency of values less than x. A quantile query specifies a given rank r, usually represented
by a fraction φ = r/n, and queries the largest value i such that rank(i) ≤ r and xi > 0. It is
usually meaningful to apply the approximation constraint on ranks, that is to return a value î
where |rank(̂i)− r| ≤ εn.1

A closely related problem is rank query, which returns the approximate rank ˆrank(i) of
any given value i such that |rank(i) − ˆrank(i)| ≤ εn. The all-quantile problem and all-ranks
problem are asymptotically equivalent. Suppose a protocol supports solving the rank problem
with error εn/2, to solve the quantile problem, let r = rank(i), then |r − ˆrank(i)| ≤ εn/2. We
only need to search for î whose approximate rank is most close to r, so that

|rank(̂i)− r| ≤ |rank(̂i)− ˆrank(̂i)|+ | ˆrank(̂i)− r| ≤ εn .

The reverse is similar. To solve the all quantile problem, bound the fail probability of every
quantile problem by O(ε), so that a union bound will make it constant for all 1/ε quantiles.

It is usually easier to consider a set of distinct elements in this problem.

5.1 Cash Register Model

If the frequency vector x is available, all ranks can be computed through a prefix-sum. The
problem is to maintain a small summary in the streaming setting. Munro and Paterson [116]
showed a lower bound of Ω(n1/p) for any p-pass algorithm that computes the median, which
means an Ω(n) lower bound for exact solutions. Manku, Rajagopalan and Lindsa [117] de-
velopped the ideas in [116] to provide a deterministic algorithm storing O(ε−1 log2(εn)) items,
assuming n was known. The best deterministic algorithm was by Greenwald and Khanna [118],
which stores O(ε−1 log εn) items and makes no assumption on knowledge of the stream. It also
has a practical version, which was the state-of-art for many years. For deterministic comparison-
based algorithm, there are lower bounds of Ω(ε−1 log ε−1) [119] and Ω(ε−1 log εn) [120]. If the
universe [u] is known in advance, the Q-digest by Shivastava et al. [121] uses O(ε−1 log u) items,
which is better when u is small.

For randomized algorithms, it is well-known that a random sample of size O(ε−2) suffices

1There may not be a value satisfying this constraint if some value j satisfies rank(j) < r− εn and rank(j) +
xj > r + εn. In this case j is the output.

22

to answer any quantile query.2 The space requirement of randomized algorithms was improved
by Manku et al. [122] to O(ε−1 log2 ε−1); by Agarwal [78] to O(ε−1 log1.5 ε−1); by Felber and
Ostrovsky [123] to O(ε−1 log ε−1); and finally by Karnin et al. [124] to O(ε−1), matching the
lower bound.

There are also works focusing on relative error [125] and historical tracking [126]. We omit
them for simplicity.

5.1.1 Q-Digest and T-Digest

The Q-digest [121] consists of a binary tree whose leaf nodes are elements in [u]. This is similar
to dyadic ranges. Having to know the universe in advance is a limitation to this algorithm. Only
O(ε−1 log u) nodes will be stored out of the O(u) nodes. Each non-leaf node is weighted and
has a maximum capacity of C = εn/ log u. To insert an item with frequency x, the algorithm
execute a find operation in the binary tree. Along the path from root to leaf, it fills the total
weight of x to the node until the capacity is reached, and carries remaining weights to the next
node, until the leaf node is reached where there is no capacity constraint.

To perform a rank query for element i, divide the nodes into 3 categories depending on their
corresponding ranges: strictly less than i, containing i and strictly larger than i. The rank of i
is estimated by the cumulative frequencies of the first category, and it is clear that error only
rises from non-leaf nodes of the second category, whose weight is at most C log u = εn.

Note that the capacity C grows with n, so a full node will become underfull after inserting
elements, requiring many nodes to be stored. To solve it, the algorithm uses a compress
operation. When the capacity increases, the node borrows weights from its descendants to be
as full as possible. The borrowed amount is carried to the lowest level possible, where the
descendant node lent all its weights and need not be maintained. After a compress operation,
each node is either full or has no children. There are at most n/C = ε−1 log u full nodes, so
O(ε−1 log u) nodes in total, binding underfull nodes to their parents. The compress operation
can be done whenever needed.

T-digest [127, 128] is based on similar clustering ideas and is widely used in industry.

5.1.2 Greenwald-Khanna Summary

The Greenwald-Khanna (GK) summary [118] is a comparision-based algorithm, where it does
not require knowledge about the domain. We describe the practical version.

The summary is an ordered list of tuples (vi, gi,∆i), where vi is a value from the universe,
gi is the number of values before vi that is represented by vi, and ∆i is the uncertainty of the
position of vi. They help bound the rank of vi by∑

j≤i

gj ≤ rank(vi) + 1 ≤ ∆i +
∑
j≤i

gj .

It follows that rank(vi) − rank(vi−1) ≤ ∆i + gi. As long as we bound ∆i + gi < 2εn, we can
solve the quantile query problem by finding a vi such that

r − εn ≤ rank(vi) ≤ r + εn .

Such an vi must exist: If r > n− εn− 1, we can simply take the maximum value whose rank is
at most n − 1 < r + εn. Otherwise we pick the maximum vi whose rank is rank(vi) ≤ r + εn.
It follows that rank(vi+1) > r + εn and therefore rank(vi) ≥ rank(vi+1) − (∆i + gi) > r − εn.
So vi satisfies the property.

2The φ-quantile in the sample is centered around the φ-quantile in the population with bounded variance
O(n2/s) for sample size s.

23

The remaining problem is to maintain the summary so that the properties are maintained.
To insert a value v, we find in the summary the smallest vi > v.3 Clearly the rank of vj
is not affected for j ≤ i − 1 and is increases by 1 for j ≥ i, so we may simply increase gi
by 1 if ∆i + gi < 2εn still holds after increasing. Otherwise we have to create a new tuple
for v between vi−1 and vi. Since rank(v) − rank(vi−1) ≤ rank(vi) − rank(vi−1) ≤ ∆i + gi,
the tuple (v, 1,∆i + gi − 1) satisfies all constraints. As this creates new tuples, we need to
compress the summary. Consecutive tuples (vi−1, gi−1,∆i−1) and (vi, gi,∆i) can be merged into
(vi, gi−1 + gi,∆i), provided that gi−1 + gi + ∆i < 2εn.

The formal space guarantee is stated in [118]. If the universe is known, we may feed a sample
of size O(ε−2 log ε−1) into the GK summary to improve the space consumption to O(ε−1 log ε−1]).

5.1.3 Karnin-Lang-Liberty

The Karnin-Lang-Liberty (KLL) summary [124] consists of h buffers B[1], . . . , B[h] that store
values from the data. The capacity of each buffer B[i] is c[i] = αh−ic[h], where 0.5 < α < 1 is
a constant. The smallest capacity c[1] is guaranteed to be at least 2.

A new element is always inserted into buffer B[1]. Whenever a buffer B[i] reaches its
capacity, a compress operation is run. The buffer sorts all its elements and sends half of them,
either all at odd positions or all at even positions to B[i+ 1] and clears itself. This may trigger
consecutive compression and create additional levels.

It is clear that the buffers holds elements from disjoint partitions of the stream. Only 2i−1

elements goes to buffer B[i]. So an fair estimate of the rank rank(v) is
∑

i 2
i−1ranki(v) where

ranki(v) is number of elements in buffer B[i] that is less than v.
To analyze the error, consider the first compression when half the elements are sent from B[1]

to B[2]. Essentially we use 2rank2(v) to estimate rank1(v) where rank2(v) is a random variable
that with probability 0.5 equals the number of odd/even elements less than v. If rank1(v) is
even, 2rank2(v) ≡ rank1(v). Otherwise, 2rank2(v) ≡ rank1(v) ± 1, whose expectation is still
rank1(v). It can be verified that a compression by B[i] keeps the estimator unbiased, while
creating an error of 2i−1X, for a random variable X = ±1 with equal probability. To bound
the total number of compression, note the the last level B[h] is never compressed. Level h− 1
can be compressed at most 2/α times, which will send (αc[h]) · (2/α) = c[h] elements to level h.
By induction, number of compression at level i is (2/α)h−i. We therefore write the total error
as

Err =
h∑
i=1

(2/α)h−i∑
j=1

2i−1Xi,j

By Chernoff-Hoeffding bound,

Pr[|Err − 0| > εn] ≤ 2 exp

(
−2ε2n2∑h

i=1

∑(2/α)h−i

j=1 22i

)

= 2 exp

(
−2ε2n2

(2/α)h
∑h

i=1(2α)i

)

≤ 2 exp

(
−2ε2n2

22h

)
To bound it by a constant, we require 2h = O(εn): There cannot be too many levels. Since B[h]
is never compressed, we have its capacity c[h] > n/2h = Ω(ε−1). Thus setting c[h] = Θ(ε−1)
suffice.

3We may have vi−1 = v.

24

5.2 Turnstile Model and Sliding Windows

It can be argued that any comparison based algorithm in the turnstile model must store
Ω(n) elements: if we insert n elements and delete n − 1 of them, we may leave any ele-
ment. A comparison-based algorithm must keep all the n elements as any of them can be
the output after deletion. So most algorithms are under the fixed-universe model. Gan-
guly and Majumder [100] gave a deterministic frequency estimation protocol that supports
quantile queries using O(ε−2 log5 u log(ε−1 log u)) space. Cormode and Muthukrishnan [93]
shows by using a dyadic data structure, a frequency estimation sketch can answer quantile
queries using O(ε−1 log2 u log(ε−1 log u)) space. Luo et al. [129] improved the consumption to
O(ε−1 log1.5 u log1.5(ε−1 log u)).

For sliding windows, Lin et al. [130] designed an algorithm using O(ε−2 + ε−1 log(ε2w))
memory. Arasu and Manku [102] improved it to O(ε−1 log ε−1 logw).

5.2.1 Dyadic Count Sketch

We introduce the Dyadic Count Sketch in [129]. It also uses the dyadic data structure [113]. We
build dyadic intervals [(i− 1)2j + 1, i2j] for j = 0, . . . , log u and i = 1, . . . , u/2j. At each level
j we build a count-sketch (or equivalent frequency estimation protocols), treating an interval
as an element. To perform a quantile query r, the algorithm runs a binary search from root
to leaf. At each node, it queries the frequency of the left child to decide whether to expand
the left or the right child. The intuition is that if all frequencies are accurately estimated, the
cumulative error is also small for the quantile. Let the size of each count sketch be L × d.
We need d = log log u to bound the total fail probability by O(log−1 u), which is a constant
summing over all O(log u) levels. Conditioned on this happening, the error at each level is
bounded by w/L, so that by Chernoff-Hoeffding bound,

Pr[|Err − 0| > εw] ≤ 2 exp

(
−2ε2w2

(2w/L)2 log u

)
= 2 exp

(
−ε2L2

2 log u

)
Taking L = Θ(ε−1

√
log u) makes the probability constant. So to answer a quantile query, it suf-

fices to use O(ε−1 log1.5 u log log u) space. To answer the all quantile query, we need to bound fail
probabilities at both places byO(ε), so that the space consumption isO(ε−1 log1.5 u

√
log ε−1 log log u

ε
)

5.2.2 Sliding Windows

The framework proposed by Arasa and Manku [102] also solves the quantile problem. The only
change is to replace the MG summary for frequency estimation by a GK sumamry for quantiles.
By properly choosing the parameters, the space can be bounded by O(ε−1 log ε−1 logw).

5.3 Distributed Streams

The heavy hitter problem and quantile problem are closely related. Agarwal et al. [78] dis-
cussed about merging quantile summaries to support one-shot estimation. Yi and Zhang [111]
designed an optimal deterministic algorithm that can track any quantile using Θ(k/ε · logN)
communication, and all quantiles using O(k/ε · logN · log2 ε−1) communication. Huang, Yi and
Zhang improved it using a randomized algorithm with O(

√
k/ε · logN · log1.5(ε

√
k)−1), while

showing an lower bound of Ω(
√
k/ε · logN).

25

5.3.1 Mergable Summaries

The Q-digest [121], KLL summary [124] and Dyadic Count Sketch [129] are easily mergable
without affecting the summary size. For GK summary, merging is not out-of-the-box [131], and
either the error or the summary size is increased [78].

5.3.2 Lazy Update Algorithm

The algorithm in [111] is similar to the heavy hitter tracking algorithm. Use the median for
illustration. First divide the tracking into O(logN) rounds, so that within each round every
site holds the same n̄ in this round, satisfying n̄ ≤ n ≤ 2n̄. When the round begins, each site
computes O(ε−1) intervals, each containing Θ(εni) items. In O(k/ε) communication, they are
all sent to the coordinator, so that the coordinator can compute the rank of any value within
O(εn) error. The coordinator then computes O(ε−1) intervals, each containing Θ(εn) items, and
broadcast them to all sites in O(k/ε) communication. By the frequency tracking algorithm,
O(k/ε) communication sufficies to track the number of items within each interval within O(εn)
error. We thus can ensure that the intervals always contain Θ(εn) items: divide it into two when
it reaches the capacity. This costs O(k) communication. With these intervals, the coordinator
can count the number of items to the left (right) of the current approximate median within
Θ(εn) error. Whenever they differ too much (Θ(εn)), the coordinator computes a new median.
The algorithm uses O(k/ε·logN) communication, which is optimal for deterministic algorithms.
This also implies an O(k/ε · logN log2 ε−1) for tracking all quantiles.

5.3.3 Importance Sampling Based Algorithm

Merging GK summaries solves the one-shot distributed quantile estimation problem using
O(ε−1 log1.5 ε−1) space [78]. The summary is of size O(ε−1). [112] usesd it as a building block
to track ranks. Similarly use O(logN) rounds so that n̄ < n < 2n̄ within each round. A site
groups its input every n̄/k elements. They are divided into blocks of capacity c = εn̄/

√
k.

They are organized into a binary tree of height h = O(log(ε
√
k)−1). The capacity of a block

at level i is c[i] = 2iεn̄/
√
k, so there are O((2iε

√
k)−1) blocks in level i. Whenever a block

becomes active, it is sent to the coordinator. The summary size is set to O(2i
√
h), so that

the total communication is O(
√
k/ε · h1.5) = O(

√
k/ε · log1.5(ε

√
k)−1). The variance of any

block is bounded by O((c[i]/(2i
√
h))2) = O(c2/h). Accumulated over h blocks through the

dyadic decomposition, it becomes O(c2). There are at most c items that does not belong to
any complete block. The authors solve it using a uniform sample with probability c−1, which
uses an additional O(

√
k/ε) communication. The variance from sampling is O(c/c−1) = O(c2).

So the total variance is O(c2) every n̄/k elements. Summing over all the groups, the variance
is O(kc2) = O(ε2n̄2).

5.4 Remarks

Table 5.1 is a summary of algorithms. Space refers to the number of items stored by the
summary. [132] gives a survey of results. Experimental evaluation of quantile algorithms are
presented in [129, 133, 134].

26

Table 5.1: Algorithms for Quantiles.

Model Algorithm Space/Communication Properties

Deterministic

Cash Register
Q-Digest [121] O(ε−1 log u) Fixed-Universe

GK Summary [118] O(ε−1 log εn) Comparison-Based

Turnstile Ganguly & Majumder [100] O(ε−2 log5 u log(ε−1 log u))

Sliding Window Arasu & Manku [102] O(ε−1 log ε−1 logw)

Distributed Tracking Yi & Zhang [111] O(k/ε · logN log2 ε−1)

Randomized

Cash Register KLL Summary [124] O(ε−1) Optimal

Turnstile Dyadic Count Sketch [129] O(ε−1 log1.5 u log1.5(ε−1 log u))

Distributed One-Shot Hybrid Quantile [78] O(ε−1 log1.5 ε−1) Summary size O(ε−1)

Distributed Tracking Huang et al. [112] O(
√
k/ε · logN log1.5(ε

√
k)−1)

27

Chapter 6

Conclusion and Open Problems

In this survey, we reviewed summaries for statistical information like distinct count, frequencies,
heavy hitters and quantiles. We also discussed about how they can be maintained under differ-
ent models, including cash register stream, turnstile stream, sliding windows and distributed
cases. The following algorithms are implemented in Apache DataSketches [135].

• HyperLogLog and KMV for the distinct count problem.

• A variant of the MG summary for the frequency estimation problem.

• KLL summary for the quantile problem.

The Count(-Min) sketch and T-digest are also widely used in practice. There are some possible
directions here.

6.1 Distributed Turnstile Streams

Existing distributed algorithms mostly work on off-line sets or cash register streams. There are
some works [69, 136, 137, 138, 139] under the distributed sliding window case but few [140]
work for distributed turnstile streams, where each remote site can receive an arbitrary sequence
of updates. The problem arises in many real applications, but it is hard under the worst case
where the adversary has too much power to manipulate inputs. It may be solvable by making
realistic assumptions on the sequence of updates [141] or on the number of deletions [61], so
that the algorithm works in practice.

6.2 Multi-Functional Summary

Currently, different summaries accomplish different jobs. This means additional storage and
maintenance costs. While a uniform sample can answer most queries, its accuracy is usually
poor. There has been an interest [140, 142, 143, 60] in answering different queries by the same
summary. It is worth investigating how to achieve a trade-off between the functionality of the
summary and its cost, and how to generalize such summaries to different models.

6.3 Summaries under Differential Privacy

There is a recent focus on releasing summaries that satisfy privacy constraints. Differential Pri-
vacy [144] has become the standard for privacy analysis, which requires the output distribution

28

to be similar with or without any individual element. That is, algorithm M satisfies (ε, δ)-DP
if for any two neighboring datasets x and x′,

Pr[M(x) ∈ O] ≤ eε · Pr[M(x′) ∈ O] + δ ,

for any subset of output O. Depending on the definition of neighboring datasets, and the
level where this condition holds, there are subcategories like user(node)-DP, event(edge)-DP,
centralized-DP, local-DP etc.

In centralized-DP, the algorithm has access to the full dataset x. The most efficient solution
is to add a noise to the output calibrated to the global sensitivity of the query [144], which is
the difference of output on neighboring datasets in the worst case. For statistical queries, the
sensitivities of distinct count and frequency estimation are both 1, so they can be released
accurately even under centralized-DP constraints. For quantile queries like median, its global
sensitivity is large. Smooth Sensitivity [145, 146] is proposed to solve such problems.

In local-DP, the algorithm must protect the privacy of individual elements. The frequency
estimation problem can be solved [147, 148] using randomized response based ideas, while the
distinct count problem is known to be hard [149].

Differential Privacy is also discussed under streaming settings, where the community uses
the term continual observations [150, 151, 152, 153]; and under distributed (streaming) settings,
also named multi-party [154, 155, 156]. Most results focus on the (easiest) frequency estimation
problem, leaving the problem unsolved for other statistical information, including distinct count
and quantiles.

29

Bibliography

[1] R. H. M. Sr., “Counting large numbers of events in small registers,” Commun. ACM,
vol. 21, no. 10, pp. 840–842, 1978.

[2] C. C. Aggarwal and P. S. Yu, “On classification of high-cardinality data streams,” in
Proceedings of the SIAM International Conference on Data Mining, SDM, pp. 802–813,
SIAM, 2010.

[3] C. Dwork, M. Naor, T. Pitassi, G. N. Rothblum, and S. Yekhanin, “Pan-private stream-
ing algorithms,” in Innovations in Computer Science - ICS 2010, pp. 66–80, Tsinghua
University Press, 2010.

[4] S. G. Choi, D. Dachman-Soled, M. Kulkarni, and A. Yerukhimovich, “Differentially-
private multi-party sketching for large-scale statistics,” Proc. Priv. Enhancing Technol.,
vol. 2020, no. 3, pp. 153–174, 2020.

[5] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss, “Surfing wavelets on
streams: One-pass summaries for approximate aggregate queries,” in VLDB 2001, Pro-
ceedings of 27th International Conference on Very Large Data Bases, pp. 79–88, Morgan
Kaufmann, 2001.

[6] S. Muthukrishnan, “Data streams: Algorithms and applications,” Found. Trends Theor.
Comput. Sci., vol. 1, no. 2, 2005.

[7] G. Cormode, S. Muthukrishnan, and W. Zhuang, “What’s different: Distributed, con-
tinuous monitoring of duplicate-resilient aggregates on data streams,” in Proceedings of
the 22nd International Conference on Data Engineering, ICDE, p. 57, IEEE Computer
Society, 2006.

[8] G. Cormode, S. Muthukrishnan, and K. Yi, “Algorithms for distributed functional mon-
itoring,” ACM Trans. Algorithms, vol. 7, no. 2, pp. 21:1–21:20, 2011.

[9] Apache Flink, “Apache Flink — Stateful Computations over Data Streams.”

[10] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting active flows on
high speed links,” in Proceedings of the 3rd ACM SIGCOMM Internet Measurement
Conference, IMC, pp. 153–166, ACM, 2003.

[11] E. Cohen, “Size-estimation framework with applications to transitive closure and reach-
ability,” J. Comput. Syst. Sci., vol. 55, no. 3, pp. 441–453, 1997.

[12] G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan, “Comparing data streams
using hamming norms (how to zero in),” IEEE Trans. Knowl. Data Eng., vol. 15, no. 3,
pp. 529–540, 2003.

30

[13] L. A. Goodman et al., “On the estimation of the number of classes in a population,” The
Annals of Mathematical Statistics, vol. 20, no. 4, pp. 572–579, 1949.

[14] W. Hou, G. Özsoyoglu, and B. K. Taneja, “Statistical estimators for relational algebra ex-
pressions,” in Proceedings of the Seventh ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pp. 276–287, 1988.

[15] J. F. Naughton and S. Seshadri, “On estimating the size of projections,” in ICDT’90,
Third International Conference on Database Theory, pp. 499–513, 1990.

[16] A. Chao, “Nonparametric estimation of the number of classes in a population,” Scandi-
navian Journal of statistics, pp. 265–270, 1984.

[17] G. Özsoyoglu, K. Du, A. Tjahjana, W. Hou, and D. Y. Rowland, “On estimating count,
sum, and AVERAGE,” in Proceedings of the International Conference on Database and
Expert Systems Applications, pp. 406–412, 1991.

[18] A. Chao and S.-M. Lee, “Estimating the number of classes via sample coverage,” Journal
of the American statistical Association, vol. 87, no. 417, pp. 210–217, 1992.

[19] P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes, “Sampling-based estimation of the
number of distinct values of an attribute,” in VLDB’95, Proceedings of 21th International
Conference on Very Large Data Bases, pp. 311–322, 1995.

[20] M. Charikar, S. Chaudhuri, R. Motwani, and V. R. Narasayya, “Towards estimation
error guarantees for distinct values,” in Proceedings of the Nineteenth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pp. 268–279, 2000.

[21] P. B. Gibbons, “Distinct sampling for highly-accurate answers to distinct values queries
and event reports,” in VLDB 2001, Proceedings of 27th International Conference on Very
Large Data Bases, pp. 541–550, 2001.

[22] M. J. Freitag and T. Neumann, “Every row counts: Combining sketches and sampling
for accurate group-by result estimates,” in CIDR 2019, 9th Biennial Conference on In-
novative Data Systems Research, www.cidrdb.org, 2019.

[23] P. Flajolet and G. N. Martin, “Probabilistic counting,” in 24th Annual Symposium on
Foundations of Computer Science, pp. 76–82, IEEE Computer Society, 1983.

[24] M. Durand and P. Flajolet, “Loglog counting of large cardinalities (extended abstract),”
in Algorithms - ESA 2003, 11th Annual European Symposium Proceedings, vol. 2832 of
Lecture Notes in Computer Science, pp. 605–617, Springer, 2003.

[25] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: The analysis of a
near-optimal cardinality estimation algorithm,” in AOFA ’07: Proceedings of the 2007
International Conference on Analysis of Algorithms, 2007.

[26] D. M. Kane, J. Nelson, and D. P. Woodruff, “An optimal algorithm for the distinct ele-
ments problem,” in Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pp. 41–52, ACM, 2010.

[27] S. Heule, M. Nunkesser, and A. Hall, “Hyperloglog in practice: algorithmic engineer-
ing of a state of the art cardinality estimation algorithm,” in Joint 2013 EDBT/ICDT
Conferences, EDBT ’13 Proceedings, pp. 683–692, ACM, 2013.

31

[28] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan, “Counting
distinct elements in a data stream,” in Randomization and Approximation Techniques,
6th International Workshop, RANDOM, vol. 2483 of Lecture Notes in Computer Science,
pp. 1–10, Springer, 2002.

[29] K. S. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla, “On synopses for
distinct-value estimation under multiset operations,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 199–210, ACM, 2007.

[30] K. S. Beyer, R. Gemulla, P. J. Haas, B. Reinwald, and Y. Sismanis, “Distinct-value
synopses for multiset operations,” Commun. ACM, vol. 52, no. 10, pp. 87–95, 2009.

[31] P. Chassaing and L. Gerin, “Efficient estimation of the cardinality of large data sets,”
Discrete Mathematics & Theoretical Computer Science, pp. 419–422, 2006.

[32] F. Giroire, “Order statistics and estimating cardinalities of massive data sets,” Discret.
Appl. Math., vol. 157, no. 2, pp. 406–427, 2009.

[33] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approximating the fre-
quency moments,” in Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, pp. 20–29, ACM, 1996.

[34] Z. Bar-Yossef, The Complexity of Massive Data Set Computations. PhD thesis, UNI-
VERSITY of CALIFORNIA at BERKELEY, 2002. Page 142.

[35] P. Indyk and D. P. Woodruff, “Tight lower bounds for the distinct elements problem,”
in 44th Symposium on Foundations of Computer Science, pp. 283–288, IEEE Computer
Society, 2003.

[36] D. P. Woodruff, “Optimal space lower bounds for all frequency moments,” in Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004,
New Orleans, Louisiana, USA, January 11-14, 2004, pp. 167–175, SIAM, 2004.

[37] T. Jayram, R. Kumar, and D. Sivakumar, “The one-way communication complexity of
hamming distance.,” Theory of Computing, vol. 4, pp. 129–135, 01 2008.

[38] D. P. Woodruff, “The average-case complexity of counting distinct elements,” in Database
Theory - ICDT 2009, 12th International Conference, vol. 361 of ACM International Con-
ference Proceeding Series, pp. 284–295, ACM, 2009.

[39] T. S. Jayram and D. P. Woodruff, “Optimal bounds for johnson-lindenstrauss transforms
and streaming problems with subconstant error,” ACM Trans. Algorithms, vol. 9, no. 3,
pp. 26:1–26:17, 2013.

[40] J. Blasiok, “Optimal streaming and tracking distinct elements with high probability,” in
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pp. 2432–2448, SIAM, 2018.

[41] J. Blasiok, “Optimal streaming and tracking distinct elements with high probability,”
ACM Trans. Algorithms, vol. 16, no. 1, pp. 3:1–3:28, 2020.

[42] Z. Huang, W. M. Tai, and K. Yi, “Tracking the frequency moments at all times,” CoRR,
vol. abs/1412.1763, 2014.

32

[43] K. Whang, B. T. V. Zanden, and H. M. Taylor, “A linear-time probabilistic counting
algorithm for database applications,” ACM Trans. Database Syst., vol. 15, no. 2, pp. 208–
229, 1990.

[44] A. Metwally, D. Agrawal, and A. E. Abbadi, “Why go logarithmic if we can go linear?:
Towards effective distinct counting of search traffic,” in EDBT 2008, 11th International
Conference on Extending Database Technology, vol. 261 of ACM International Conference
Proceeding Series, pp. 618–629, ACM, 2008.

[45] P. Flajolet, “On adaptive sampling,” Computing, vol. 43, no. 4, pp. 391–400, 1990.

[46] Redis, “PFCOUNT.”

[47] Amazon Redshift, “Using HyperLogLog sketches in amazon redshift.”

[48] Apache Spark, “Spark SQL, Built-in Functions.”

[49] Presto, “8.21. HyperLogLog functions.”

[50] P. B. Gibbons and S. Tirthapura, “Estimating simple functions on the union of data
streams,” in Proceedings of the Thirteenth Annual ACM Symposium on Parallel Algo-
rithms and Architectures, SPAA, pp. 281–291, ACM, 2001.

[51] G. Cormode, S. Muthukrishnan, and I. Rozenbaum, “Summarizing and mining inverse
distributions on data streams via dynamic inverse sampling,” in Proceedings of the 31st
International Conference on Very Large Data Bases, pp. 25–36, ACM, 2005.

[52] G. Frahling, P. Indyk, and C. Sohler, “Sampling in dynamic data streams and applica-
tions,” in Proceedings of the 21st ACM Symposium on Computational Geometry, pp. 142–
149, ACM, 2005.

[53] A. Chen and J. Cao, “Distinct counting with a self-learning bitmap,” in Proceedings of
the 25th International Conference on Data Engineering, ICDE, pp. 1171–1174, IEEE
Computer Society, 2009.

[54] A. Chen, J. Cao, L. Shepp, and T. Nguyen, “Distinct counting with a self-learning
bitmap,” CoRR, vol. abs/1107.1697, 2011.

[55] C. Estan, G. Varghese, and M. E. Fisk, “Bitmap algorithms for counting active flows on
high-speed links,” IEEE/ACM Trans. Netw., vol. 14, no. 5, pp. 925–937, 2006.

[56] D. Ting, “Streamed approximate counting of distinct elements: beating optimal batch
methods,” in The 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD, pp. 442–451, ACM, 2014.

[57] D. M. Kane, J. Nelson, and D. P. Woodruff, “On the exact space complexity of sketching
and streaming small norms,” in Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19,
2010, pp. 1161–1178, SIAM, 2010.

[58] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining stream statistics over
sliding windows,” SIAM J. Comput., vol. 31, no. 6, pp. 1794–1813, 2002.

33

[59] V. Braverman, E. Grigorescu, H. Lang, D. P. Woodruff, and S. Zhou, “Nearly optimal dis-
tinct elements and heavy hitters on sliding windows,” in Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM,
vol. 116 of LIPIcs, pp. 7:1–7:22, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018.

[60] E. Assaf, R. Ben-Basat, G. Einziger, and R. Friedman, “Pay for a sliding bloom filter
and get counting, distinct elements, and entropy for free,” in 2018 IEEE Conference on
Computer Communications, pp. 2204–2212, IEEE, 2018.

[61] R. Jayaram and D. P. Woodruff, “Data streams with bounded deletions,” in Proceedings of
the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
pp. 341–354, ACM, 2018.

[62] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data base applica-
tions,” J. Comput. Syst. Sci., vol. 31, no. 2, pp. 182–209, 1985.

[63] A. Shukla, P. Deshpande, J. F. Naughton, and K. Ramasamy, “Storage estimation for
multidimensional aggregates in the presence of hierarchies,” in VLDB’96, Proceedings of
22th International Conference on Very Large Data Bases, pp. 522–531, Morgan Kauf-
mann, 1996.

[64] S. Ganguly, M. N. Garofalakis, and R. Rastogi, “Processing set expressions over continu-
ous update streams,” in Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, pp. 265–276, ACM, 2003.

[65] S. Ganguly, M. N. Garofalakis, and R. Rastogi, “Tracking set-expression cardinalities
over continuous update streams,” VLDB J., vol. 13, no. 4, pp. 354–369, 2004.

[66] S. Ganguly, “Counting distinct items over update streams,” in Algorithms and Compu-
tation, 16th International Symposium, ISAAC, vol. 3827 of Lecture Notes in Computer
Science, pp. 505–514, Springer, 2005.

[67] S. Ganguly, “Counting distinct items over update streams,” Theor. Comput. Sci., vol. 378,
no. 3, pp. 211–222, 2007.

[68] A. Nazi, B. Ding, V. R. Narasayya, and S. Chaudhuri, “Efficient estimation of inclusion
coefficient using hyperloglog sketches,” Proc. VLDB Endow., vol. 11, no. 10, pp. 1097–
1109, 2018.

[69] P. B. Gibbons and S. Tirthapura, “Distributed streams algorithms for sliding windows,”
in Proceedings of the Fourteenth Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA, pp. 63–72, ACM, 2002.

[70] É. Fusy and F. Giroire, “Estimating the number of active flows in a data stream over
a sliding window,” in Proceedings of the Fourth Workshop on Analytic Algorithmics and
Combinatorics, ANALCO, pp. 223–231, SIAM, 2007.

[71] Y. Chabchoub and G. Hébrail, “Sliding hyperloglog: Estimating cardinality in a data
stream over a sliding window,” in ICDMW 2010, The 10th IEEE International Conference
on Data Mining Workshops, pp. 1297–1303, IEEE Computer Society, 2010.

[72] P. Indyk, “Stable distributions, pseudorandom generators, embeddings, and data stream
computation,” J. ACM, vol. 53, no. 3, pp. 307–323, 2006.

34

[73] G. Cormode, S. Muthukrishnan, and K. Yi, “Algorithms for distributed functional moni-
toring,” in Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008, pp. 1076–
1085, SIAM, 2008.

[74] C. Arackaparambil, J. Brody, and A. Chakrabarti, “Functional monitoring without mono-
tonicity,” in Automata, Languages and Programming, 36th International Colloquium,
ICALP, vol. 5555 of Lecture Notes in Computer Science, pp. 95–106, Springer, 2009.

[75] A. Chakrabarti and O. Regev, “An optimal lower bound on the communication complex-
ity of gap-hamming-distance,” in Proceedings of the 43rd ACM Symposium on Theory of
Computing, STOC, pp. 51–60, ACM, 2011.

[76] D. P. Woodruff and Q. Zhang, “Tight bounds for distributed functional monitoring,”
CoRR, vol. abs/1112.5153, 2011.

[77] D. P. Woodruff and Q. Zhang, “An optimal lower bound for distinct elements in the mes-
sage passing model,” in Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA, pp. 718–733, SIAM, 2014.

[78] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips, Z. Wei, and K. Yi, “Mergeable
summaries,” in Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pp. 23–34, ACM, 2012.

[79] D. Ting, “Towards optimal cardinality estimation of unions and intersections with
sketches,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 1195–1204, ACM, 2016.

[80] A. Das, S. Ganguly, M. N. Garofalakis, and R. Rastogi, “Distributed set expression
cardinality estimation,” in (e)Proceedings of the Thirtieth International Conference on
Very Large Data Bases, VLDB, pp. 312–323, Morgan Kaufmann, 2004.

[81] G. Cormode, “Sketch techniques for approximate query processing,” Foundations and
Trends in Databases. NOW publishers, 2011.

[82] P. B. Gibbons, “Distinct-values estimation over data streams,” in Data Stream Man-
agement - Processing High-Speed Data Streams, Data-Centric Systems and Applications,
pp. 121–147, Springer, 2016.

[83] G. Cormode and K. Yi, Small Summaries for Big Data. Cambridge University Press,
2020.

[84] W. Chen and Y. Guan, “Distinct element counting in distributed dynamic data streams,”
in 2015 IEEE Conference on Computer Communications, INFOCOM 2015, Kowloon,
Hong Kong, April 26 - May 1, 2015, pp. 2371–2379, IEEE, 2015.

[85] P. Flajolet, “Approximate counting: A detailed analysis,” BIT Comput. Sci. Sect., vol. 25,
no. 1, pp. 113–134, 1985.

[86] A. Gronemeier and M. Sauerhoff, “Applying approximate counting for computing the
frequency moments of long data streams,” Theory Comput. Syst., vol. 44, no. 3, pp. 332–
348, 2009.

[87] J. Nelson and H. Yu, “Optimal bounds for approximate counting,” CoRR,
vol. abs/2010.02116, 2020.

35

[88] P. Bose, E. Kranakis, P. Morin, and Y. Tang, “Bounds for frequency estimation of packet
streams,” in SIROCCO 10: Proceedings of the 10th Internaltional Colloquium on Struc-
tural Information Complexity, vol. 17 of Proceedings in Informatics, pp. 33–42, Carleton
Scientific, 2003.

[89] J. Misra and D. Gries, “Finding repeated elements,” Sci. Comput. Program., vol. 2, no. 2,
pp. 143–152, 1982.

[90] A. Metwally, D. Agrawal, and A. E. Abbadi, “Efficient computation of frequent and
top-k elements in data streams,” in Database Theory - ICDT 2005, 10th International
Conference, vol. 3363 of Lecture Notes in Computer Science, pp. 398–412, Springer, 2005.

[91] R. Berinde, G. Cormode, P. Indyk, and M. J. Strauss, “Space-optimal heavy hitters
with strong error bounds,” in Proceedings of the Twenty-Eigth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2009, June 19 - July 1,
2009, Providence, Rhode Island, USA, pp. 157–166, ACM, 2009.

[92] M. Charikar, K. C. Chen, and M. Farach-Colton, “Finding frequent items in data
streams,” in Automata, Languages and Programming, 29th International Colloquium,
ICALP, vol. 2380 of Lecture Notes in Computer Science, pp. 693–703, Springer, 2002.

[93] G. Cormode and S. Muthukrishnan, “An improved data stream summary: The count-min
sketch and its applications,” in LATIN 2004: Theoretical Informatics, 6th Latin American
Symposium, vol. 2976 of Lecture Notes in Computer Science, pp. 29–38, Springer, 2004.

[94] J. S. Moore, “A fast majority vote algorithm,” tech. rep., Automated Reasoning: Essays
in Honor of Woody Bledsoe, 1981.

[95] R. S. Boyer and J. S. Moore, “MJRTY: A fast majority vote algorithm,” in Automated
Reasoning: Essays in Honor of Woody Bledsoe, Automated Reasoning Series, pp. 105–
118, Kluwer Academic Publishers, 1991.

[96] E. D. Demaine, A. López-Ortiz, and J. I. Munro, “Frequency estimation of internet
packet streams with limited space,” in Algorithms - ESA 2002, 10th Annual European
Symposium, vol. 2461 of Lecture Notes in Computer Science, pp. 348–360, Springer, 2002.

[97] R. M. Karp, S. Shenker, and C. H. Papadimitriou, “A simple algorithm for finding fre-
quent elements in streams and bags,” ACM Trans. Database Syst., vol. 28, pp. 51–55,
2003.

[98] G. S. Manku and R. Motwani, “Approximate frequency counts over data streams,” in
Proceedings of 28th International Conference on Very Large Data Bases, VLDB, pp. 346–
357, Morgan Kaufmann, 2002.

[99] D. Ting, “Data sketches for disaggregated subset sum and frequent item estimation,”
in Proceedings of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018, pp. 1129–1140, ACM, 2018.

[100] S. Ganguly and A. Majumder, “Cr-precis: A deterministic summary structure for update
data streams,” in Combinatorics, Algorithms, Probabilistic and Experimental Methodolo-
gies, First International Symposium, ESCAPE 2007, Hangzhou, China, April 7-9, 2007,
Revised Selected Papers, vol. 4614 of Lecture Notes in Computer Science, pp. 48–59,
Springer, 2007.

36

[101] S. Ganguly, “Lower bounds on frequency estimation of data streams (extended abstract),”
in Computer Science - Theory and Applications, Third International Computer Sci-
ence Symposium in Russia, CSR 2008, Moscow, Russia, June 7-12, 2008, Proceedings,
vol. 5010 of Lecture Notes in Computer Science, pp. 204–215, Springer, 2008.

[102] A. Arasu and G. S. Manku, “Approximate counts and quantiles over sliding windows,” in
Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, pp. 286–296, ACM, 2004.

[103] L. Lee and H. F. Ting, “A simpler and more efficient deterministic scheme for finding
frequent items over sliding windows,” in Proceedings of the Twenty-Fifth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 290–297, ACM,
2006.

[104] L. Zhang and Y. Guan, “Frequency estimation over sliding windows,” in Proceedings of
the 24th International Conference on Data Engineering, pp. 1385–1387, IEEE Computer
Society, 2008.

[105] R. Y. S. Hung, L. Lee, and H. Ting, “Finding frequent items over sliding windows with
constant update time,” Inf. Process. Lett., vol. 110, no. 7, pp. 257–260, 2010.

[106] R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner, “Heavy hitters in streams and
sliding windows,” in 35th Annual IEEE International Conference on Computer Commu-
nications, pp. 1–9, IEEE, 2016.

[107] N. Rivetti, Y. Busnel, and A. Mostéfaoui, “Efficiently summarizing data streams over
sliding windows,” in 14th IEEE International Symposium on Network Computing and
Applications, NCA, pp. 151–158, IEEE Computer Society, 2015.

[108] Q. Zhao, M. Ogihara, H. Wang, and J. J. Xu, “Finding global icebergs over distributed
data sets,” in Proceedings of the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, pp. 298–307, ACM, 2006.

[109] Z. Huang, K. Yi, Y. Liu, and G. Chen, “Optimal sampling algorithms for frequency
estimation in distributed data,” in INFOCOM 2011. 30th IEEE International Conference
on Computer Communications, pp. 1997–2005, IEEE, 2011.

[110] D. P. Woodruff and Q. Zhang, “Tight bounds for distributed functional monitoring,” in
Proceedings of the 44th Symposium on Theory of Computing Conference, STOC, pp. 941–
960, ACM, 2012.

[111] K. Yi and Q. Zhang, “Optimal tracking of distributed heavy hitters and quantiles,”
in Proceedings of the Twenty-Eigth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS, pp. 167–174, ACM, 2009.

[112] Z. Huang, K. Yi, and Q. Zhang, “Randomized algorithms for tracking distributed count,
frequencies, and ranks,” in Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS, pp. 295–306, ACM, 2012.

[113] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss, “How to summarize the
universe: Dynamic maintenance of quantiles,” in Proceedings of 28th International Con-
ference on Very Large Data Bases, VLDB 2002, Hong Kong, August 20-23, 2002, pp. 454–
465, Morgan Kaufmann, 2002.

37

[114] G. Cormode and S. Muthukrishnan, “An improved data stream summary: the count-min
sketch and its applications,” J. Algorithms, vol. 55, no. 1, pp. 58–75, 2005.

[115] G. Cormode and M. Hadjieleftheriou, “Finding the frequent items in streams of data,”
Commun. ACM, vol. 52, no. 10, pp. 97–105, 2009.

[116] J. I. Munro and M. Paterson, “Selection and sorting with limited storage,” in 19th Annual
Symposium on Foundations of Computer Science, pp. 253–258, IEEE Computer Society,
1978.

[117] G. S. Manku, S. Rajagopalan, and B. G. Lindsay, “Approximate medians and other
quantiles in one pass and with limited memory,” in SIGMOD 1998, Proceedings ACM
SIGMOD International Conference on Management of Data, pp. 426–435, ACM Press,
1998.

[118] M. Greenwald and S. Khanna, “Space-efficient online computation of quantile sum-
maries,” in Proceedings of the 2001 ACM SIGMOD international conference on Man-
agement of data, pp. 58–66, ACM, 2001.

[119] R. Y. S. Hung and H. Ting, “An w(\frac1e log\frac1e)\omega(\frac{1}{\varepsilon}
\log \frac{1}{\varepsilon}) space lower bound for finding epsilon-approximate quantiles
in a data stream,” in Frontiers in Algorithmics, 4th International Workshop, FAW 2010,
vol. 6213 of Lecture Notes in Computer Science, pp. 89–100, Springer, 2010.

[120] G. Cormode and P. Veselý, “A tight lower bound for comparison-based quantile sum-
maries,” in Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Prin-
ciples of Database System, pp. 81–93, ACM, 2020.

[121] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, “Medians and beyond: new
aggregation techniques for sensor networks,” in Proceedings of the 2nd International Con-
ference on Embedded Networked Sensor Systems, pp. 239–249, ACM, 2004.

[122] G. S. Manku, S. Rajagopalan, and B. G. Lindsay, “Random sampling techniques for
space efficient online computation of order statistics of large datasets,” in SIGMOD 1999,
Proceedings ACM SIGMOD International Conference on Management of Data, pp. 251–
262, ACM Press, 1999.

[123] D. Felber and R. Ostrovsky, “A randomized online quantile summary in o(1/epsilon *
log(1/epsilon)) words,” in Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, APPROX/RANDOM, vol. 40 of LIPIcs, pp. 775–785,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

[124] Z. S. Karnin, K. J. Lang, and E. Liberty, “Optimal quantile approximation in streams,”
in IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS, pp. 71–78,
IEEE Computer Society, 2016.

[125] G. Cormode, Z. S. Karnin, E. Liberty, J. Thaler, and P. Veselý, “Relative error streaming
quantiles,” CoRR, vol. abs/2004.01668, 2020.

[126] Y. Tao, K. Yi, C. Sheng, J. Pei, and F. Li, “Logging every footstep: quantile summaries
for the entire history,” in Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD, pp. 639–650, ACM, 2010.

[127] T. Dunning and O. Ertl, “Computing extremely accurate quantiles using t-digests,”
CoRR, vol. abs/1902.04023, 2019.

38

[128] T. Dunning, “The t-digest: Efficient estimates of distributions,” Softw. Impacts, vol. 7,
p. 100049, 2021.

[129] G. Luo, L. Wang, K. Yi, and G. Cormode, “Quantiles over data streams: experimental
comparisons, new analyses, and further improvements,” VLDB J., vol. 25, no. 4, pp. 449–
472, 2016.

[130] X. Lin, H. Lu, J. Xu, and J. X. Yu, “Continuously maintaining quantile summaries of
the most recent N elements over a data stream,” in Proceedings of the 20th International
Conference on Data Engineering, ICDE, pp. 362–373, IEEE Computer Society, 2004.

[131] M. Greenwald and S. Khanna, “Power-conserving computation of order-statistics over
sensor networks,” in Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pp. 275–285, ACM, 2004.

[132] C. Buragohain and S. Suri, “Quantiles on streams,” in Encyclopedia of Database Systems,
Second Edition, Springer, 2018.

[133] N. Ivkin, E. Liberty, K. J. Lang, Z. S. Karnin, and V. Braverman, “Streaming quantiles
algorithms with small space and update time,” CoRR, vol. abs/1907.00236, 2019.

[134] G. Cormode, T. Kulkarni, and D. Srivastava, “Constrained private mechanisms for count
data,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 2, pp. 415–430, 2021.

[135] Apache, “DataSketches.”

[136] G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang, “Optimal sampling from dis-
tributed streams,” in Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS, pp. 77–86, ACM, 2010.

[137] H. Chan, T. W. Lam, L. Lee, and H. Ting, “Continuous monitoring of distributed data
streams over a time-based sliding window,” in 27th International Symposium on Theoreti-
cal Aspects of Computer Science, STACS, vol. 5 of LIPIcs, pp. 179–190, Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2010.

[138] G. Cormode and K. Yi, “Tracking distributed aggregates over time-based sliding win-
dows,” in Proceedings of the 30th Annual ACM Symposium on Principles of Distributed
Computing, pp. 213–214, ACM, 2011.

[139] S. Gayen and N. V. Vinodchandran, “New algorithms for distributed sliding windows,”
in 16th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT, vol. 101
of LIPIcs, pp. 22:1–22:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[140] G. Cormode and M. N. Garofalakis, “Approximate continuous querying over distributed
streams,” ACM Trans. Database Syst., vol. 33, no. 2, pp. 9:1–9:39, 2008.

[141] K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen, “Efficient maintenance of materialized
top-k views,” in Proceedings of the 19th International Conference on Data Engineering,
pp. 189–200, IEEE Computer Society, 2003.

[142] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement with opensketch,”
in Proceedings of the 10th USENIX Symposium on Networked Systems Design and Im-
plementation, NSDI, pp. 29–42, USENIX Association, 2013.

39

[143] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One sketch to rule
them all: Rethinking network flow monitoring with univmon,” in Proceedings of the
ACM SIGCOMM, pp. 101–114, ACM, 2016.

[144] C. Dwork, F. McSherry, K. Nissim, and A. D. Smith, “Calibrating noise to sensitivity in
private data analysis,” in Theory of Cryptography, Third Theory of Cryptography Con-
ference, TCC, vol. 3876 of Lecture Notes in Computer Science, pp. 265–284, Springer,
2006.

[145] K. Nissim, S. Raskhodnikova, and A. D. Smith, “Smooth sensitivity and sampling in
private data analysis,” in Proceedings of the 39th Annual ACM Symposium on Theory of
Computing, pp. 75–84, ACM, 2007.

[146] N. M. Johnson, J. P. Near, and D. Song, “Towards practical differential privacy for SQL
queries,” Proc. VLDB Endow., vol. 11, no. 5, pp. 526–539, 2018.

[147] T. Wang, J. Blocki, N. Li, and S. Jha, “Locally differentially private protocols for
frequency estimation,” in 26th USENIX Security Symposium, USENIX, pp. 729–745,
USENIX Association, 2017.

[148] T. Wang, M. Lopuhaä-Zwakenberg, Z. Li, B. Skoric, and N. Li, “Locally differentially
private frequency estimation with consistency,” in 27th Annual Network and Distributed
System Security Symposium, NDSS 2020, San Diego, California, USA, February 23-26,
2020, The Internet Society, 2020.

[149] L. Chen, B. Ghazi, R. Kumar, and P. Manurangsi, “On distributed differential privacy
and counting distinct elements,” in 12th Innovations in Theoretical Computer Science
Conference, ITCS, vol. 185 of LIPIcs, pp. 56:1–56:18, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021.

[150] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum, “Differential privacy under continual
observation,” in Proceedings of the 42nd ACM Symposium on Theory of Computing,
STOC, pp. 715–724, ACM, 2010.

[151] T. H. Chan, E. Shi, and D. Song, “Private and continual release of statistics,” ACM
Trans. Inf. Syst. Secur., vol. 14, no. 3, pp. 26:1–26:24, 2011.

[152] T. H. Chan, E. Shi, and D. Song, “Privacy-preserving stream aggregation with fault
tolerance,” in Financial Cryptography and Data Security - 16th International Conference,
vol. 7397 of Lecture Notes in Computer Science, pp. 200–214, Springer, 2012.

[153] C. Dwork, M. Naor, O. Reingold, and G. N. Rothblum, “Pure differential privacy for
rectangle queries via private partitions,” in Advances in Cryptology - ASIACRYPT 2015
- 21st International Conference on the Theory and Application of Cryptology and Infor-
mation Security, vol. 9453 of Lecture Notes in Computer Science, pp. 735–751, Springer,
2015.

[154] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our data, our-
selves: Privacy via distributed noise generation,” in Advances in Cryptology - EURO-
CRYPT 2006, 25th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, vol. 4004 of Lecture Notes in Computer Science, pp. 486–503,
Springer, 2006.

40

[155] T. H. Chan, M. Li, E. Shi, and W. Xu, “Differentially private continual monitoring of
heavy hitters from distributed streams,” in Privacy Enhancing Technologies - 12th Inter-
national Symposium, PETS, vol. 7384 of Lecture Notes in Computer Science, pp. 140–159,
Springer, 2012.

[156] E. Shi, T. H. Chan, E. G. Rieffel, and D. Song, “Distributed private data analysis: Lower
bounds and practical constructions,” ACM Trans. Algorithms, vol. 13, no. 4, pp. 50:1–
50:38, 2017.

41

	Title Page
	Table of Contents
	Abstract
	Introduction
	Preliminaries
	Data Stream Models
	Distributed Stream Model
	Inequalities
	Markov's Inequality
	Chebyshev's Inequality
	Additive Chernoff-Hoeffding bound

	Notations

	Distinct Count
	Cash Register Model
	Probabilistic Counting (FM-sketch)
	(Hyper)LogLog
	KMV and MinCount
	Coordinated (Distinct) Sampling
	S-BITMAP

	Turnstile Model and Sliding Windows
	Augmenting FM/HLL/KMV with Counters
	Approximation by Stable Distribution Sketch
	Nearly Optimal Algorithm on Sliding Windows

	Distributed Streams
	Merging FM/HLL/KMV
	Lazy Update Algorithms
	Distributed Distinct Sampling

	Remarks

	Frequency Estimation and Heavy Hitters
	Basic Counting
	Cash Register Model
	Misra-Gries Summary and SpaceSaving

	Turnstile Model and Sliding Windows
	Count-Min Sketch
	Count Sketch
	Sliding-Windows Sketches
	Window Counter

	Distributed Multisets
	Deterministic Solution
	Coin-Flip Sampling
	Importance Sampling

	Distributed Streams
	Lazy Update Algorithm
	Distributed Importance Sampling

	Finding Heavy Hitters
	Histogram-Based Solutions
	Sketch-Based Solutions

	Remarks

	Quantiles
	Cash Register Model
	Q-Digest and T-Digest
	Greenwald-Khanna Summary
	Karnin-Lang-Liberty

	Turnstile Model and Sliding Windows
	Dyadic Count Sketch
	Sliding Windows

	Distributed Streams
	Mergable Summaries
	Lazy Update Algorithm
	Importance Sampling Based Algorithm

	Remarks

	Conclusion and Open Problems
	Distributed Turnstile Streams
	Multi-Functional Summary
	Summaries under Differential Privacy

	Bibliography

