
Abstract

{yqiuac, spapadias, yike}@cse.ust.hk

Yuan Qiu, Serafeim Papadias, Ke Yi

Streaming HyperCube: A Massively Parallel Stream Join Algorithm

HKUST

Stream Join

Stream 𝑅 …

Stream 𝑆 …

Increment …

⋈

HyperCube

Stream join is an essential operation in many real-time

applications. On static data, the HyperCube algorithm

ensures a balanced load across all processors in an optimal

way. We extend this algorithm to the streaming setting, which

can adapt the HyperCube configuration depending on the

current data distribution.

Input tuple 𝑎, 𝑏 ∈ 𝑅:

Light Hitter: Parallel Hash Join

Heavy Hitter: Cartesian Product

1 𝑝ℎ(𝑏)

𝑎, 𝑏 ∈ 𝑅 𝑏, 𝑐 ∈ 𝑆

𝑎, 𝑏, 𝑐 ∈ Output

ℎ(𝑎)

1 𝑝𝑆ℎ(𝑐)

𝑝𝑅

𝑏, 𝑐 ∈ 𝑆

𝑎, 𝑏 ∈ 𝑅

𝑎, 𝑏, 𝑐 ∈ Output

Challenge
• All heavy hitter information is needed to decide the

configuration of each cube.

• The heavy hitter set may change throughout the stream

processing.

System Architecture

Stream
𝑅 = (𝐴, 𝐵)

Source

Stream
𝑆 = (𝐵, 𝐶)

Heavy Hitter Tracking

𝐵𝐻 = 𝑏 | 𝐼𝑁 𝑏 >
𝐼𝑁

𝑝
For each Heavy hitter 𝑏:

𝑅 𝑏 = 𝜎𝐵=𝑏𝑅
𝑆 𝑏 = 𝜎𝐵=𝑏𝑆

𝑂𝑈𝑇 𝑏 = 𝑅 𝑏 ⋅ 𝑆 𝑏

𝑂𝑈𝑇𝐻 = ෍

𝑏∈𝐵𝐻

𝑂𝑈𝑇 𝑏

Dispatcher

Task Pool

Light Heavy 𝑏1

𝑎, 𝑏

𝑎, 𝑏1

Heavy 𝑏2

𝑏2, 𝑐

Light Tasks Heavy Tasks

Create

Depreciate

Resize(+)

Resize(-)

Signal a

State-Migration

- Creating

- Depreciating

- Resizing

Heavy Tasks

… Workers …

Output

When the current

allocation is

suboptimal by a

constant factor!

Evaluation

Zipf Data, Varying Skewness 𝛼 Zipf Data, Varying Input Size

TPC-H Data, Varying Skewness 𝛼 COREL Data, 𝑟 defines similarity

(Higher skewness with larger 𝑟)

• Parallel Hash Join • Streaming HyperCube • Join-Biclique

