
Abstract

{yqiuac, spapadias, yike}@cse.ust.hk

Yuan Qiu, Serafeim Papadias, Ke Yi

Streaming HyperCube: A Massively Parallel Stream Join Algorithm

HKUST

Stream Join

Stream 𝑅 …

Stream 𝑆 …

Increment …

⋈

HyperCube

Stream join is an essential operation in many real-time 

applications. On static data, the HyperCube algorithm 

ensures a balanced load across all processors in an optimal 

way. We extend this algorithm to the streaming setting, which 

can adapt the HyperCube configuration depending on the 

current data distribution.
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Challenge
• All heavy hitter information is needed to decide the 

configuration of each cube.

• The heavy hitter set may change throughout the stream 

processing.
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Evaluation

Zipf Data, Varying Skewness 𝛼 Zipf Data, Varying Input Size

TPC-H Data, Varying Skewness 𝛼 COREL Data, 𝑟 defines similarity

(Higher skewness with larger 𝑟)

• Parallel Hash Join • Streaming HyperCube • Join-Biclique


